Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid droplets and liver disease: from basic biology to clinical implications

This article has been updated

Key Points

  • Depending on the body's needs, the liver utilizes lipids to generate metabolic energy, secretes them as lipoproteins, or packages them for storage

  • Unbalanced lipid storage and utilization result in supraphysiological triglyceride accumulation in hepatocytes, known as hepatic steatosis

  • Hepatic lipids accumulate in organelles known as cytoplasmic lipid droplets

  • Our expanding knowledge of lipid droplets and their associated protein machinery provide opportunities for molecular-based approaches for treating nonalcoholic steatosis and steatohepatitis

Abstract

Lipid droplets are dynamic organelles that store neutral lipids during times of energy excess and serve as an energy reservoir during deprivation. Many prevalent metabolic diseases, such as the metabolic syndrome or obesity, often result in abnormal lipid accumulation in lipid droplets in the liver, also called hepatic steatosis. Obesity-related steatosis, or NAFLD in particular, is a major public health concern worldwide and is frequently associated with insulin resistance and type 2 diabetes mellitus. Here, we review the latest insights into the biology of lipid droplets and their role in maintaining lipid homeostasis in the liver. We also offer a perspective of liver diseases that feature lipid accumulation in these lipid storage organelles, which include NAFLD and viral hepatitis. Although clinical applications of this knowledge are just beginning, we highlight new opportunities for identifying molecular targets for treating hepatic steatosis and steatohepatitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hepatic steatosis results from an imbalance in lipid storage and lipolysis or secretion.
Figure 2: Histopathology of NAFLD showing areas of macrosteatosis and microsteatosis.
Figure 3: Lipid droplet formation and expansion.
Figure 4: Giant lipid droplet formation.
Figure 5: Lipid droplet consumption.
Figure 6: Possible therapeutic targets to decrease hepatic steatosis.

Similar content being viewed by others

Change history

  • 26 April 2017

    In the version of this article initially published online, a line in the legend of Figure 3 incorrectly referred to DGAT1 instead of DGAT2 protein. This error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Fazel, Y., Koenig, A. B., Sayiner, M., Goodman, Z. D. & Younossi, Z. M. Epidemiology and natural history of non-alcoholic fatty liver disease. Metab. Clin. Exp. 65, 1017–1025 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Li, R. et al. Prevalence of metabolic syndrome in mainland China: a meta-analysis of published studies. BMC Public Health 16, 296 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 746 (2014).

    Article  Google Scholar 

  4. Haas, J. T., Francque, S. & Staels, B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu. Rev. Physiol. 78, 181–205 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Kawano, Y. & Cohen, D. E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol. 48, 434–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hardy, T., Anstee, Q. M. & Day, C. P. Nonalcoholic fatty liver disease: new treatments. Curr. Opin. Gastroenterol. 31, 175–183 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wong, R. J. et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 148, 547–555 (2015).

    Article  PubMed  Google Scholar 

  8. Buzzetti, E., Pinzani, M. & Tsochatzis, E. A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metab. Clin. Exp. 65, 1038–1048 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Cohen, J. C., Horton, J. D. & Hobbs, H. H. Human fatty liver disease: old questions and new insights. Science 332, 1519–1523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mashek, D. G. Hepatic fatty acid trafficking: multiple forks in the road. Adv. Nutr. 4, 697–710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hussain, M. M. Intestinal lipid absorption and lipoprotein formation. Curr. Opin. Lipidol. 25, 200–206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nestel, P. J., Havel, R. J. & Bezman, A. Sites of initial removal of chylomicron triglyceride fatty acids from the blood. J. Clin. Invest. 41, 1915–1921 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldstein, J. L. & Brown, M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J. Biol. Chem. 249, 5153–5162 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Hussain, M. M. et al. Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J. Biol. Chem. 266, 13936–13940 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Rohlmann, A., Gotthardt, M., Hammer, R. E. & Herz, J. Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J. Clin. Invest. 101, 689–695 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harrison, E. H. & Hussain, M. M. Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A. J. Nutr. 131, 1405–1408 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Blaner, W. S. et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim. Biophys. Acta 1791, 467–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y., Viscarra, J., Kim, S.-J. & Sul, H. S. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 16, 678–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tontonoz, P. & Mangelsdorf, D. J. Liver X receptor signaling pathways in cardiovascular disease. Mol. Endocrinol. 17, 985–993 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Villanueva, C. J. et al. Specific role for acyl CoA:Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids. Hepatology 50, 434–442 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Wurie, H. R., Buckett, L. & Zammit, V. A. Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides and de novo synthesized fatty acids in HepG2 cells. FEBS J. 279, 3033–3047 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Qi, J. et al. The use of stable isotope-labeled glycerol and oleic acid to differentiate the hepatic functions of DGAT1 and -2. J. Lipid Res. 53, 1106–1116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tiwari, S. & Siddiqi, S. A. Intracellular trafficking and secretion of VLDL. Arterioscler. Thromb. Vasc. Biol. 32, 1079–1086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alexander, C. A., Hamilton, R. L. & Havel, R. J. Subcellular localization of B apoprotein of plasma lipoproteins in rat liver. J. Cell Biol. 69, 241–263 (1976).

    Article  CAS  PubMed  Google Scholar 

  27. Boren, J., Rustaeus, S. & Olofsson, S. O. Studies on the assembly of apolipoprotein B-100- and B-48-containing very low density lipoproteins in McA-RH7777 cells. J. Biol. Chem. 269, 25879–25888 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Wetterau, J. R. & Zilversmit, D. B. A triglyceride and cholesteryl ester transfer protein associated with liver microsomes. J. Biol. Chem. 259, 10863–10866 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Ginsberg, H. N. & Fisher, E. A. The ever-expanding role of degradation in the regulation of apolipoprotein B metabolism. J. Lipid Res. 50 (Suppl.), S162–S166 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lehner, R. & Verger, R. Purification and characterization of a porcine liver microsomal triacylglycerol hydrolase. Biochemistry 36, 1861–1868 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Ye, J. et al. Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab. 9, 177–190 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Bamberger, M. J. & Lane, M. D. Possible role of the Golgi apparatus in the assembly of very low density lipoprotein. Proc. Natl Acad. Sci. USA 87, 2390–2394 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Higgins, J. A. Evidence that during very low density lipoprotein assembly in rat hepatocytes most of the triacylglycerol and phospholipid are packaged with apolipoprotein B in the Golgi complex. FEBS Lett. 232, 405–408 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Gusarova, V., Brodsky, J. L. & Fisher, E. A. Apolipoprotein B100 exit from the endoplasmic reticulum (ER) is COPII-dependent, and its lipidation to very low density lipoprotein occurs post-ER. J. Biol. Chem. 278, 48051–48058 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Santos, A. J. M., Nogueira, C., Ortega-Bellido, M. & Malhotra, V. TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J. Cell Biol. 213, 343–354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pitman, J. L., Bonnet, D. J., Curtiss, L. K. & Gekakis, N. Reduced cholesterol and triglycerides in mice with a mutation in Mia2, a liver protein that localizes to ER exit sites. J. Lipid Res. 52, 1775–1786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei, Y., Rector, S., Thyfault, J. P. & Ibdah, J. A. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J. Gastroenterol. 14, 193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61, 1547–1554 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397.e10 (2015).

    Article  PubMed  Google Scholar 

  40. Altman, R. Die Elementarorganismen und Ihre Beziehungen zu den Zellen (in German) (Veit, 1890).

    Google Scholar 

  41. Wilson, E. The Cell in Development and Inheritance (Macmillan, 1896).

    Google Scholar 

  42. Greenberg, A. S. et al. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J. Biol. Chem. 266, 11341–11346 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Thiam, A. R., Farese, R. V. Jr & Walther, T. C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14, 775–786 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walther, T. C. & Farese, R. V. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krahmer, N. et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab. 14, 504–515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bartz, R. et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 48, 837–847 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Wilfling, F. et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24, 384–399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yen, C.-L. E., Stone, S. J., Koliwad, S., Harris, C. & Farese, R. V. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 49, 2283–2301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cases, S. et al. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc. Natl Acad. Sci. USA 95, 13018–13023 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cases, S. et al. Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J. Biol. Chem. 276, 38870–38876 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Listenberger, L. L. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl Acad. Sci. USA 100, 3077–3082 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chang, C. C., Huh, H. Y., Cadigan, K. M. & Chang, T. Y. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J. Biol. Chem. 268, 20747–20755 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Anderson, R. A. et al. Identification of a form of Acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J. Biol. Chem. 273, 26747–26754 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Cases, S. et al. ACAT-2, a second mammalian Acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization. J. Biol. Chem. 273, 26755–26764 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Oelkers, P., Behari, A., Cromley, D., Billheimer, J. T. & Sturley, S. L. Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J. Biol. Chem. 273, 26765–26771 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, O., Chang, C. C. Y., Lee, W. & Chang, T.-Y. Immunodepletion experiments suggest that acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) protein plays a major catalytic role in adult human liver, adrenal gland, macrophages, and kidney, but not in intestines. J. Lipid Res. 39, 1722–1727 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Chang, C. C. et al. Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J. Biol. Chem. 275, 28083–28092 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Buhman, K. K. et al. Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat. Med. 6, 1341–1347 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Parini, P. et al. ACAT2 is localized to hepatocytes and is the major cholesterol-esterifying enzyme in human liver. Circulation 110, 2017–2023 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Wilfling, F., Haas, J. T., Walther, T. C. & Farese, R. V. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29, 39–45 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thiam, A. R. & Forêt, L. The physics of lipid droplet nucleation, growth and budding. Biochim. Biophys. Acta 1861, 715–722 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Tan, J. S. Y., Seow, C. J. P., Goh, V. J. & Silver, D. L. Recent advances in understanding proteins involved in lipid droplet formation, growth and fusion. J. Genet. Genomics 41, 251–259 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Chang, T. Y., Chang, C. C., Lu, X. & Lin, S. Catalysis of ACAT may be completed within the plane of the membrane: a working hypothesis. J. Lipid Res. 42, 1933–1938 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Brasaemle, D. L. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J. Lipid Res. 48, 2547–2559 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Jacquier, N. et al. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Sci. 124, 2424–2437 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Jacquier, N., Mishra, S., Choudhary, V. & Schneiter, R. Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J. Cell Sci. 126, 5198–5209 (2013).

    CAS  PubMed  Google Scholar 

  67. Kassan, A. et al. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 203, 985–1001 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Choudhary, V., Ojha, N., Golden, A. & Prinz, W. A. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J. Cell Biol. 211, 261–271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fei, W. et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J. Cell Biol. 180, 473–482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Szymanski, K. M. et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl Acad. Sci. USA 104, 20890–20895 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kadereit, B. et al. Evolutionarily conserved gene family important for fat storage. Proc. Natl Acad. Sci. USA 105, 94–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Cartwright, B. R. et al. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol. Biol. Cell 26, 726–739 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wang, H. et al. Seipin is required for converting nascent to mature lipid droplets. eLife 5, e16582 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Grippa, A. et al. The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. J. Cell Biol. 211, 829–844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McFie, P. J., Stone, S. L., Banman, S. L. & Stone, S. J. Topological orientation of acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) and identification of a putative active site histidine and the role of the n terminus in dimer/tetramer formation. J. Biol. Chem. 285, 37377–37387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stone, S. J. et al. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J. Biol. Chem. 284, 5352–5361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kuerschner, L., Moessinger, C. & Thiele, C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9, 338–352 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Wilfling, F. et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. eLife 3, e01607 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Beller, M. et al. COPI complex is a regulator of lipid homeostasis. PLoS Biol. 6, e292 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Guo, Y. et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453, 657–661 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kory, N., Farese, R. V. & Walther, T. C. Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol. 26, 535–546 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, C. C. et al. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 21, 3470–3482 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Turró, S. et al. Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7, 1254–1269 (2006).

    Article  PubMed  CAS  Google Scholar 

  84. Fujimoto, Y. et al. Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim. Biophys. Acta 1644, 47–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Sato, S. et al. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J. Biochem. 139, 921–930 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Xu, L., Zhou, L. & Li, P. CIDE proteins and lipid metabolism. Arterioscler. Thromb. Vasc. Biol. 32, 1094–1098 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Zimmermann, R. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Gong, J. et al. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J. Cell Biol. 195, 953–963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fredrikson, G., Stralfors, P., Nilsson, N. O. & Belfrage, P. Hormone-sensitive lipase of rat adipose tissue. Purification and some properties. J. Biol. Chem. 256, 6311–6320 (1981).

    Article  CAS  PubMed  Google Scholar 

  90. Vaughn, M., Berger, J. & Steinberg, D. Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J. Biol. Chem. 239, 401–409 (1964).

    Article  Google Scholar 

  91. Tornqvist, H. & Belfrage, P. Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue. J. Biol. Chem. 251, 813–819 (1976).

    Article  CAS  PubMed  Google Scholar 

  92. Quiroga, A. D. & Lehner, R. Liver triacylglycerol lipases. Biochim. Biophys. Acta 1821, 762–769 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Reid, B. N. et al. Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J. Biol. Chem. 283, 13087–13099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, J. W. et al. Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology 54, 122–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. He, S. et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285, 6706–6715 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Qiao, A. et al. Mouse patatin-like phospholipase domain-containing 3 influences systemic lipid and glucose homeostasis. Hepatology 54, 509–521 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Ruhanen, H. et al. PNPLA3 mediates hepatocyte triacylglycerol remodeling. J. Lipid Res. 55, 739–746 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ong, K. T., Mashek, M. T., Bu, S. Y., Greenberg, A. S. & Mashek, D. G. Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatology 53, 116–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Dolinsky, V. W., Sipione, S., Lehner, R. & Vance, D. E. The cloning and expression of a murine triacylglycerol hydrolase cDNA and the structure of its corresponding gene. Biochim. Biophys. Acta 1532, 162–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Singh, R. & Cuervo, A. M. Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012, 282041 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32, 678–692 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kory, N., Thiam, A. R., Farese, R. V. & Walther, T. C. Protein crowding is a determinant of lipid droplet protein composition. Dev. Cell 34, 351–363 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kaushik, S. & Cuervo, A. M. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat. Cell Biol. 17, 759–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fabbrini, E., Sullivan, S. & Klein, S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51, 679–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhong, W. et al. Chronic alcohol exposure stimulates adipose tissue lipolysis in mice: role of reverse triglyceride transport in the pathogenesis of alcoholic steatosis. Am. J. Pathol. 180, 998–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Westerbacka, J. et al. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes 56, 2759–2765 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Miquilena-Colina, M. E. et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 60, 1394–1402 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Greco, D. et al. Gene expression in human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 294, 1281–1287 (2008).

    Article  CAS  Google Scholar 

  111. Ji, C. & Kaplowitz, N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology 124, 1488–1499 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Xu, X., Park, J. G., So, J. S. & Lee, A. H. Transcriptional activation of Fsp27 by the liver-enriched transcription factor CREBH promotes lipid droplet growth and hepatic steatosis. Hepatology 61, 857–869 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Langhi, C. & Baldán, Á. CIDEC/FSP27 is regulated by peroxisome proliferator-activated receptor alpha and plays a critical role in fasting-and diet-induced hepatosteatosis. Hepatology 61, 1227–1238 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Murphy, S., Martin, S. & Parton, R. G. Quantitative analysis of lipid droplet fusion: inefficient steady state fusion but rapid stimulation by chemical fusogens. PLoS ONE 5, e15030 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ling, J., Chaba, T., Zhu, L.-F., Jacobs, R. L. & Vance, D. E. Hepatic ratio of phosphatidylcholine to phosphatidylethanolamine predicts survival after partial hepatectomy in mice. Hepatology 55, 1094–1102 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Niebergall, L. J., Jacobs, R. L., Chaba, T. & Vance, D. E. Phosphatidylcholine protects against steatosis in mice but not non-alcoholic steatohepatitis. Biochim. Biophys. Acta 1811, 1177–1185 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Lee, H. S. et al. Beneficial effects of phosphatidylcholine on high-fat diet-induced obesity, hyperlipidemia and fatty liver in mice. Life Sci. 118, 7–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Yao, Z. M. & Vance, D. E. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J. Biol. Chem. 263, 2998–3004 (1988).

    Article  CAS  PubMed  Google Scholar 

  119. Rong, X. et al. Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. eLife 4, e6557 (2015).

    Article  Google Scholar 

  120. Fei, W., Wang, H., Fu, X., Bielby, C. & Yang, H. Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem. J. 424, 61–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Yamamoto, K. et al. Induction of liver steatosis and lipid droplet formation in ATF6alpha-knockout mice burdened with pharmacological endoplasmic reticulum stress. Mol. Biol. Cell 21, 2975–2986 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lee, J.-S., Mendez, R., Heng, H. H., Yang, Z.-Q. & Zhang, K. Pharmacological ER stress promotes hepatic lipogenesis and lipid droplet formation. Am. J. Transl Res. 4, 102–113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Özcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  PubMed  CAS  Google Scholar 

  124. Lee, A.-H., Scapa, E. F., Cohen, D. E. & Glimcher, L. H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492–1496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Lass, A. et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 3, 309–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Guo, F. et al. Deficiency of liver comparative gene identification-58 causes steatohepatitis and fibrosis in mice. J. Lipid Res. 54, 2109–2120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fischer, J. et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat. Genet. 39, 28–30 (2006).

    Article  PubMed  CAS  Google Scholar 

  129. Wu, J. W. et al. Inborn errors of cytoplasmic triglyceride metabolism. J. Inherit. Metab. Dis. 38, 85–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Mitra, S., Samanta, M., Sarkar, M. & Chatterjee, S. Dorfman-Chanarin syndrome: a rare neutral lipid storage disease. Indian J. Pathol. Microbiol. 53, 799–801 (2010).

    Article  PubMed  Google Scholar 

  131. Natali, A. et al. Metabolic consequences of adipose triglyceride lipase deficiency in humans: an in vivo study in patients with neutral lipid storage disease with myopathy. J. Clin. Endocrinol. Metab. 98, E1540–E1548 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Cakmak, E. et al. Steatohepatitis and liver cirrhosis in Chanarin-Dorfman syndrome with a new ABDH5 mutation. Clin. Res. Hepatol. Gastroenterol. 36, e34–e37 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Lord, C. C. et al. Regulation of hepatic triacylglycerol metabolism by CGI-58 does not require ATGL co-activation. Cell Rep. 16, 939–949 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schweiger, M., Lass, A., Zimmermann, R., Eichmann, T. O. & Zechner, R. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am. J. Physiol. Endocrinol. Metab. 297, E289–E296 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Yang, L., Li, P., Fu, S., Calay, E. S. & Hotamisligil, G. S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Thoen, L. F. R. et al. A role for autophagy during hepatic stellate cell activation. J. Hepatol. 55, 1353–1360 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Hernández Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938–946 (2012).

    Article  PubMed  Google Scholar 

  138. Blanchette-Mackie, E. J. & Scow, R. O. Movement of lipolytic products to mitochondria in brown adipose tissue of young rats: an electron microscope study. J. Lipid Res. 24, 229–244 (1983).

    Article  CAS  PubMed  Google Scholar 

  139. Wang, H. et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J. Lipid Res. 52, 2159–2168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Magnusson, B. et al. Adipocyte differentiation-related protein promotes fatty acid storage in cytosolic triglycerides and inhibits secretion of very low-density lipoproteins. Arterioscler. Thromb. Vasc. Biol. 26, 1566–1571 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Kimmel, A. R. & Sztalryd, C. Perilipin 5, a lipid droplet protein adapted to mitochondrial energy utilization. Curr. Opin. Lipidol. 25, 110–117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kimmel, A. R. & Sztalryd, C. The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu. Rev. Nutr. 36, 471–509 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Carr, R. M. & Ahima, R. S. Pathophysiology of lipid droplet proteins in liver diseases. Exp. Cell Res. 340, 187–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Sun, Z. et al. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat. Commun. 4, 1594 (2013).

    Article  PubMed  CAS  Google Scholar 

  145. Straub, B. K., Stoeffel, P., Heid, H., Zimbelmann, R. & Schirmacher, P. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47, 1936–1946 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Yamaguchi, T. et al. CGI-58 facilitates lipolysis on lipid droplets but is not involved in the vesiculation of lipid droplets caused by hormonal stimulation. J. Lipid Res. 48, 1078–1089 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Imai, Y. et al. Reduction of hepatosteatosis and lipid levels by an adipose differentiation-related protein antisense oligonucleotide. Gastroenterology 132, 1947–1954 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Imai, Y. et al. Effects of perilipin 2 antisense oligonucleotide treatment on hepatic lipid metabolism and gene expression. Physiol. Genomics 44, 1125–1131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Granneman, J. G., Moore, H., Mottillo, E. P. & Zhu, Z. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J. Biol. Chem. 286, 5126–5135 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Ikura, Y. & Caldwell, S. H. Lipid droplet-associated proteins in alcoholic liver disease: a potential linkage with hepatocellular damage. Int. J. Clin. Exp. Pathol. 8, 8699–8708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Carr, R. M., Peralta, G., Yin, X. & Ahima, R. S. Absence of perilipin 2 prevents hepatic steatosis, glucose intolerance and ceramide accumulation in alcohol-fed mice. PLoS ONE 9, e97118 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Matsusue, K. et al. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab. 7, 302–311 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shulman, G. I. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Farese, R. V., Zechner, R., Newgard, C. B. & Walther, T. C. The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance. Cell Metab. 15, 570–573 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kumashiro, N. et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 108, 16381–16385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Brown, M. S. & Goldstein, J. L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 7, 95–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Monetti, M. et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 6, 69–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Brown, J. M. et al. CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance. J. Lipid Res. 51, 3306–3315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Samuel, V. T., Petersen, K. F. & Shulman, G. I. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375, 2267–2277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Summers, S. A. Sphingolipids and insulin resistance: the five Ws. Curr. Opin. Lipidol. 21, 128–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Minehira, K. et al. Blocking VLDL secretion causes hepatic steatosis but does not affect peripheral lipid stores or insulin sensitivity in mice. J. Lipid Res. 49, 2038–2044 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jornayvaz, F. R. et al. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proc. Natl Acad. Sci. USA 108, 5748–5752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Boni, L. T. & Rando, R. R. The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols. J. Biol. Chem. 260, 10819–10825 (1985).

    Article  CAS  PubMed  Google Scholar 

  164. Griffin, M. E. et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48, 1270–1274 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Eichmann, T. O. et al. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J. Biol. Chem. 287, 41446–41457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yuan, X. et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am. J. Hum. Genet. 83, 520–528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dongiovanni, P. et al. PNPLA3 I148M polymorphism and progressive liver disease. World J. Gastroenterol. 19, 6969–6978 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Valenti, L. et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 51, 1209–1217 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Macaluso, F. S., Maida, M. & Petta, S. Genetic background in nonalcoholic fatty liver disease: a comprehensive review. World J. Gastroenterol. 21, 11088–11111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Huang, Y., Cohen, J. C. & Hobbs, H. H. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J. Biol. Chem. 286, 37085–37093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Pingitore, P. et al. Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function. Biochim. Biophys. Acta 1841, 574–580 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Basantani, M. K. et al. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J. Lipid Res. 52, 318–329 (2010).

    Article  PubMed  CAS  Google Scholar 

  174. Chen, W., Chang, B., Li, L. & Chan, L. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology 52, 1134–1142 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Li, J. Z. et al. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J. Clin. Invest. 122, 4130–4144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kumari, M. et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 15, 691–702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Smagris, E. et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61, 108–118 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Friedman, S. L., Wei, S. & Blaner, W. S. Retinol release by activated rat hepatic lipocytes: regulation by Kupffer cell-conditioned medium and PDGF. Am. J. Physiol. Gastrointest. Liver Physiol. 264, G947–G952 (1993).

    Article  CAS  Google Scholar 

  179. Pirazzi, C. et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum. Mol. Genet. 23, 4077–4085 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kozlitina, J. et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46, 352–356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Holmen, O. L. et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat. Genet. 46, 345–351 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mahdessian, H. et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc. Natl Acad. Sci. USA 111, 8913–8918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Buch, S. et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat. Genet. 47, 1443–1448 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Mancina, R. M. et al. The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology 150, 1219–1230.e6 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Adinolfi, L. E. et al. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology 33, 1358–1364 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Harris, C., Herker, E., Farese, R. V. & Ott, M. Hepatitis C virus core protein decreases lipid droplet turnover: a mechanism for core-induced steatosis. J. Biol. Chem. 286, 42615–42625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Filipe, A. & McLauchlan, J. Hepatitis C virus and lipid droplets: finding a niche. Trends Mol. Med. 21, 34–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Roingeard, P. & Melo, R. C. N. Lipid droplet hijacking by intracellular pathogens. Cell. Microbiol. 19, e12688 (2017).

    Article  CAS  Google Scholar 

  189. Camus, G., Vogt, D. A., Kondratowicz, A. S. & Ott, M. Lipid droplets and viral infections. Methods Cell Biol. 116, 167–190 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Herker, E. & Ott, M. Unique ties between hepatitis C virus replication and intracellular lipids. Trends Endocrinol. Metab. 22, 241–248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Herker, E. et al. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat. Med. 16, 1295–1298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Boulant, S. et al. Structural determinants that target the hepatitis C virus core protein to lipid droplets. J. Biol. Chem. 281, 22236–22247 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Moriya, K. et al. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J. Gen. Virol. 78, 1527–1531 (1997).

    Article  CAS  PubMed  Google Scholar 

  194. Camus, G. et al. Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J. Biol. Chem. 288, 9915–9923 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Camus, G. et al. The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets. J. Biol. Chem. 289, 35770–35780 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sanyal, A. J. et al. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases — U.S. Food and Drug Administration Joint Workshop. Hepatology 61, 1392–1405 (2015).

    Article  PubMed  Google Scholar 

  197. Yamamoto, T., Yamaguchi, H., Miki, H. & Shimada, M. Coenzyme a: diacylglycerol acyltransferase 1 inhibitor ameliorates obesity, liver steatosis, and lipid metabolism abnormality in KKA y mice fed high-fat or high-carbohydrate diets. Eur. J. Pharmacol. 640, 243–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Denison, H. et al. Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: a randomized clinical trial. Diabetes Obes. Metab. 16, 334–343 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Yu, X. X. et al. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology 42, 362–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Yamaguchi, K. et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45, 1366–1374 (2007).

    Article  CAS  PubMed  Google Scholar 

  201. Brown, J. M. & Rudel, L. L. Stearoyl-coenzyme A desaturase 1 inhibition and the metabolic syndrome: considerations for future drug discovery. Curr. Opin. Lipidol. 21, 192–197 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Alexandrescu for the pathology images in Figure 2, and G. Howard for editorial assistance. R.V.F. acknowledges support from NIH National Institute of General Medical Sciences R01 GM099844, NIH National Institute of Diabetes and Digestive and Kidney Diseases R01 DK056084 and R01 DK101579. T.C.W. acknowledges support from NIH National Institute of General Medical Sciences R01 GM097194. T.C.W. is an investigator of the Howard Hughes Medical Institute. M.B. is supported by a fellowship from the Jane Coffin Childs Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research, discussion, writing and reviewing/editing of the manuscript before submission.

Corresponding authors

Correspondence to Tobias C. Walther or Robert V. Farese Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gluchowski, N., Becuwe, M., Walther, T. et al. Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol 14, 343–355 (2017). https://doi.org/10.1038/nrgastro.2017.32

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.32

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing