Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the mechanisms of faecal microbiota transplantation

Key Points

  • Faecal microbiota transplantation (FMT) involves administration of the whole microbial community from healthy donor stool into the recipient's intestinal tract to normalize or modify intestinal microbiota composition and function

  • Overall suppression of microbiota and disruption of its community structure in the colon, most commonly resulting from antibiotic therapies, is the fundamental problem underlying the pathogenesis of Clostridium difficile infection (CDI)

  • FMT results in normalization of microbial diversity and community structure in patients being treated for CDI, with high rates of clinical cure

  • The restored colon microbial community could inhibit C. difficile by multiple mechanisms: competition for nutrients; direct suppression by antimicrobial peptides; bile-acid-mediated inhibition of spore germination and vegetative growth; and activation of immune-mediated colonization resistance

Abstract

This Review summarizes mechanistic investigations in faecal microbiota transplantation (FMT), which has increasingly been adapted into clinical practice as treatment for Clostridium difficile infection (CDI) that cannot be eliminated with antibiotics alone. Administration of healthy donor faecal microbiota in this clinical situation results in its engraftment and restoration of normal gut microbial community structure and functionality. In this Review, we consider several main mechanisms for FMT effectiveness in treatment of CDI, including direct competition of C. difficile with commensal microbiota delivered by FMT, restoration of secondary bile acid metabolism in the colon and repair of the gut barrier by stimulation of the mucosal immune system. Some of these mechanistic insights suggest possibilities for developing novel, next-generation CDI therapeutics. FMT might also have potential applications for non-CDI indications. The gut can become a reservoir of other potential antibiotic-resistant pathogens under pressure of antibiotic treatments, and restoration of normal microbial community structure by FMT might be a promising approach to protect against infections with these pathogens as well. Finally, FMT could be considered for multiple chronic diseases that are associated with some form of dysbiosis. However, considerable research is needed to optimize the FMT protocols for such applications before their therapeutic promise can be evaluated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of indigenous intestinal microbiota leads to vulnerability to C. difficile infection.

Similar content being viewed by others

References

  1. Fischbach, M. A. & Walsh, C. T. Antibiotics for emerging pathogens. Science 325, 1089–1093 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Laxminarayan, R. et al. Antibiotic resistance — the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).

    PubMed  Google Scholar 

  3. Kelly, C. P. & LaMont, J. T. Clostridium difficile — more difficult than ever. N. Engl. J. Med. 359, 1932–1940 (2008).

    CAS  PubMed  Google Scholar 

  4. Lessa, F. C. et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825–834 (2015).

    CAS  PubMed  Google Scholar 

  5. Borody, T. J. & Khoruts, A. Fecal microbiota transplantation and emerging applications. Nat. Rev. Gastroenterol. Hepatol. 9, 88–96 (2012).

    CAS  Google Scholar 

  6. McFarland, L. V., Elmer, G. W. & Surawicz, C. M. Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease. Am. J. Gastroenterol. 97, 1769–1775 (2002).

    CAS  PubMed  Google Scholar 

  7. Khoruts, A., Dicksved, J., Jansson, J. K. & Sadowsky, M. J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 44, 354–360 (2010).

    PubMed  Google Scholar 

  8. Hamilton, M. J., Weingarden, A. R., Unno, T., Khoruts, A. & Sadowsky, M. J. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 4, 125–135 (2013).

    PubMed  PubMed Central  Google Scholar 

  9. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    CAS  PubMed  Google Scholar 

  10. Shankar, V. et al. Species and genus level resolution analysis of gut microbiota in Clostridium difficile patients following fecal microbiota transplantation. Microbiome 2, 13 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Seekatz, A. M. et al. Recovery of the gut microbiome following fecal microbiota transplantation. mBio 5, e00893–e00814 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Weingarden, A. et al. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3, 10 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Weingarden, A. R. et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G310–G319 (2014).

    CAS  PubMed  Google Scholar 

  14. Drekonja, D. et al. Fecal microbiota transplantation for Clostridium difficile infection: a systematic review. Ann. Intern. Med. 162, 630–638 (2015).

    PubMed  Google Scholar 

  15. Weingarden, A. R., Hamilton, M. J., Sadowsky, M. J. & Khoruts, A. Resolution of severe Clostridium difficile infection following sequential fecal microbiota transplantation. J. Clin. Gastroenterol. 47, 735–737 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Fischer, M. et al. Faecal microbiota transplantation plus selected use of vancomycin for severe-complicated Clostridium difficile infection: description of a protocol with high success rate. Aliment. Pharmacol. Ther. 42, 470–476 (2015).

    CAS  PubMed  Google Scholar 

  17. Markelov, A., Livert, D. & Kohli, H. Predictors of fatal outcome after colectomy for fulminant Clostridium difficile Colitis: a 10-year experience. dr.markelov@gmail.com. Am. Surg. 77, 977–980 (2011).

    PubMed  Google Scholar 

  18. Lamontagne, F. et al. Impact of emergency colectomy on survival of patients with fulminant Clostridium difficile colitis during an epidemic caused by a hypervirulent strain. Ann. Surg. 245, 267–272 (2007).

    PubMed  PubMed Central  Google Scholar 

  19. Hamilton, M. J., Weingarden, A. R., Sadowsky, M. J. & Khoruts, A. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am. J. Gastroenterol. 107, 761–767 (2012).

    PubMed  Google Scholar 

  20. Youngster, I. et al. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 312, 1772–1778 (2014).

    CAS  PubMed  Google Scholar 

  21. Chang, J. Y. et al. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J. Infect. Dis. 197, 435–438 (2008).

    PubMed  Google Scholar 

  22. Broecker, F. et al. Long-term changes of bacterial and viral compositions in the intestine of a recovered Clostridium difficile patient after fecal microbiota transplantation. Cold Spring Harb. Mol. Case Stud. 2, a000448 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Angelberger, S. et al. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am. J. Gastroenterol. 108, 1620–1630 (2013).

    CAS  PubMed  Google Scholar 

  25. Kump, P. K. et al. Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis. Inflamm. Bowel Dis. 19, 2155–2165 (2013).

    PubMed  Google Scholar 

  26. Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110–118.e4 (2015).

    PubMed  Google Scholar 

  27. Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102–109.e6 (2015).

    PubMed  Google Scholar 

  28. Kolho, K. L. et al. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am. J. Gastroenterol. 110, 921–930 (2015).

    PubMed  Google Scholar 

  29. Busquets, D. et al. Anti-tumour necrosis factor treatment with adalimumab induces changes in the microbiota of Crohn's disease. J. Crohns Colitis 9, 899–906 (2015).

    PubMed  Google Scholar 

  30. Damman, C. J. et al. Low level engraftment and improvement following a single colonoscopic administration of fecal microbiota to patients with ulcerative colitis. PLoS ONE 10, e0133925 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host–bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    PubMed  Google Scholar 

  32. Fuentes, S. et al. Reset of a critically disturbed microbial ecosystem: faecal transplant in recurrent Clostridium difficile infection. ISME J. 8, 1621–1633 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Chehoud, C. et al. Transfer of viral communities between human individuals during fecal microbiota transplantation. mBio 7, e00322–e00316 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller, M. The fascination with probiotics for Clostridium difficile infection: lack of evidence for prophylactic or therapeutic efficacy. Anaerobe 15, 281–284 (2009).

    PubMed  Google Scholar 

  35. Petrof, E. O. et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: 'RePOOPulating' the gut. Microbiome 1, 3 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. O'Connor, J. R., Johnson, S. & Gerding, D. N. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology 136, 1913–1924 (2009).

    CAS  PubMed  Google Scholar 

  37. Lessa, F. C., Gould, C. V. & McDonald, L. C. Current status of Clostridium difficile infection epidemiology. Clin. Infect. Dis. 55, S65–S70 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    CAS  PubMed  Google Scholar 

  39. Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilson, K. H. & Perini, F. Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect. Immun. 56, 2610–2614 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kopke, M., Straub, M. & Durre, P. Clostridium difficile is an autotrophic bacterial pathogen. PLoS ONE 8, e62157 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Gerding, D. N. et al. Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA 313, 1719–1727 (2015).

    PubMed  Google Scholar 

  43. Lawley, T. D. et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8, e1002995 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lenski, R. E. & Riley, M. A. Chemical warfare from an ecological perspective. Proc. Natl Acad. Sci. USA 99, 556–558 (2002).

    CAS  PubMed  Google Scholar 

  45. Rea, M. C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl Acad. Sci. USA 107, 9352–9357 (2010).

    CAS  PubMed  Google Scholar 

  46. Breukink, E. & de Kruijff, B. The lantibiotic nisin, a special case or not? Biochim. Biophys. Acta 1462, 223–234 (1999).

    CAS  PubMed  Google Scholar 

  47. Le Lay, C., Dridi, L., Bergeron, M. G., Ouellette, M. & Fliss, I. Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. J. Med. Microbiol. 65, 169–175 (2016).

    CAS  PubMed  Google Scholar 

  48. Lakshminarayanan, B. et al. Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. J. Med. Microbiol. 62, 457–466 (2013).

    CAS  PubMed  Google Scholar 

  49. Ross, R. P., Morgan, S. & Hill, C. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79, 3–16 (2002).

    CAS  PubMed  Google Scholar 

  50. Rea, M. C. et al. Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. J. Med. Microbiol. 56, 940–946 (2007).

    CAS  PubMed  Google Scholar 

  51. McAuliffe, O. et al. Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl. Environ. Microbiol. 64, 439–445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bakken, J. S. Staggered and tapered antibiotic withdrawal with administration of kefir for recurrent Clostridium difficile infection. Clin. Infect. Dis. 59, 858–861 (2014).

    PubMed  Google Scholar 

  53. Heinlen, L. & Ballard, J. D. Clostridium difficile infection. Am. J. Med. Sci. 340, 247–252 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Wilson, K. H. Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J. Clin. Microbiol. 18, 1017–1019 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhattacharjee, D. et al. Reexamining the germination phenotypes of several Clostridium difficile strains suggests another role for the CspC germinant receptor. J. Bacteriol. 198, 777–786 (2015).

    PubMed  Google Scholar 

  56. Browne, H. P. et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Francis, M. B., Allen, C. A., Shrestha, R. & Sorg, J. A. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog. 9, e1003356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Burns, D. A., Heap, J. T. & Minton, N. P. SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J. Bacteriol. 192, 657–664 (2010).

    CAS  PubMed  Google Scholar 

  59. Sorg, J. A. & Sonenshein, A. L. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 192, 4983–4990 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hofmann, A. F. & Hagey, L. R. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci. 65, 2461–2483 (2008).

    CAS  PubMed  Google Scholar 

  61. Weingarden, A. R. et al. Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control Clostridium difficile germination and growth. PLoS ONE 11, e0147210 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Mekhjian, H. S., Phillips, S. F. & Hofmann, A. F. Colonic absorption of unconjugated bile acids: perfusion studies in man. Dig. Dis. Sci. 24, 545–550 (1979).

    CAS  PubMed  Google Scholar 

  63. Bennion, L. J. et al. Sex differences in the size of bile acid pools. Metabolism 27, 961–969 (1978).

    CAS  PubMed  Google Scholar 

  64. Lee, C. H. et al. The outcome and long-term follow-up of 94 patients with recurrent and refractory Clostridium difficile infection using single to multiple fecal microbiota transplantation via retention enema. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1425–1428 (2014).

    CAS  PubMed  Google Scholar 

  65. Agrawal, M. et al. The long-term efficacy and safety of fecal microbiota transplant for recurrent, severe, and complicated Clostridium difficile infection in 146 elderly individuals. J. Clin. Gastroenterol. 146, S-42–S-43 (2015).

    Google Scholar 

  66. Khoruts, A. et al. Inflammatory bowel disease affects the outcome of fecal microbiota transplantation for recurrent Clostridium difficile infection. Clin. Gastroenterol. Hepatol. http://dx.doi.org/10.1016/j.cgh.2016.02.018 (2016).

  67. Hammons, J. L., Jordan, W. E., Stewart, R. L., Taulbee, J. D. & Berg, R. W. Age and diet effects on fecal bile acids in infants. J. Pediatr. Gastroenterol. Nutr. 7, 30–38 (1988).

    CAS  PubMed  Google Scholar 

  68. Jangi, S. & Lamont, J. T. Asymptomatic colonization by Clostridium difficile in infants: implications for disease in later life. J. Pediatr. Gastroenterol. Nutr. 51, 2–7 (2010).

    PubMed  Google Scholar 

  69. Hafiz, S. & Oakley, C. L. Clostridium difficile: isolation and characteristics. J. Med. Microbiol. 9, 129–136 (1976).

    CAS  PubMed  Google Scholar 

  70. Pothoulakis, C. & Lamont, J. T. Microbes and microbial toxins: paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G178–G183 (2001).

    CAS  PubMed  Google Scholar 

  71. Hill, C. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).

    PubMed  Google Scholar 

  72. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    CAS  PubMed  Google Scholar 

  73. Gerding, D. N., Muto, C. A. & Owens, R. C. Jr Treatment of Clostridium difficile infection. Clin. Infect. Dis. 46, S32–S42 (2008).

    CAS  PubMed  Google Scholar 

  74. Mogg, G. A. et al. Randomized controlled trial of colestipol in antibiotic-associated colitis. Br. J. Surg. 69, 137–139 (1982).

    CAS  PubMed  Google Scholar 

  75. Cohen, S. H. et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect. Control Hosp. Epidemiol. 31, 431–455 (2010).

    PubMed  Google Scholar 

  76. Bertolotti, M. et al. Regulation of bile acid synthesis in humans: effect of treatment with bile acids, cholestyramine or simvastatin on cholesterol 7α-hydroxylation rates in vivo. Hepatology 14, 830–837 (1991).

    CAS  PubMed  Google Scholar 

  77. Reihner, E. et al. Regulation of hepatic cholesterol metabolism in humans: stimulatory effects of cholestyramine on HMG-CoA reductase activity and low density lipoprotein receptor expression in gallstone patients. J. Lipid Res. 31, 2219–2226 (1990).

    CAS  PubMed  Google Scholar 

  78. Bertolotti, M. et al. Influence of newly synthesized cholesterol on bile acid synthesis during chronic inhibition of bile acid absorption. Hepatology 38, 939–946 (2003).

    CAS  PubMed  Google Scholar 

  79. Walters, J. R. et al. The response of patients with bile acid diarrhoea to the farnesoid X receptor agonist obeticholic acid. Aliment. Pharmacol. Ther. 41, 54–64 (2015).

    CAS  PubMed  Google Scholar 

  80. Zhang, J. H. et al. Potent stimulation of fibroblast growth factor 19 expression in the human ileum by bile acids. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G940–G948 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Weingarden, A. R. et al. Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J. Clin. Gastroenterol. http://dx.doi.org/10.1097/MCG.0000000000000427 (2015).

  82. Rodrigues, C. M., Kren, B. T., Steer, C. J. & Setchell, K. D. The site-specific delivery of ursodeoxycholic acid to the rat colon by sulfate conjugation. Gastroenterology 109, 1835–1844 (1995).

    CAS  PubMed  Google Scholar 

  83. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Voth, D. E. & Ballard, J. D. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18, 247–263 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. El Feghaly, R. E. et al. Markers of intestinal inflammation, not bacterial burden, correlate with clinical outcomes in Clostridium difficile infection. Clin. Infect. Dis. 56, 1713–1721 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).

    CAS  PubMed  Google Scholar 

  88. Ng, J. et al. Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 139, 542–552.e3 (2010).

    CAS  PubMed  Google Scholar 

  89. Hasegawa, M. et al. Protective role of commensals against Clostridium difficile infection via an IL-1β-mediated positive-feedback loop. J. Immunol. 189, 3085–3091 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Google Scholar 

  91. Papayannopoulos, V. & Zychlinsky, A. NETs: a new strategy for using old weapons. Trends Immunol. 30, 513–521 (2009).

    CAS  PubMed  Google Scholar 

  92. Buonomo, E. L. et al. Role of interleukin 23 signaling in Clostridium difficile colitis. J. Infect. Dis. 208, 917–920 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cowardin, C. A. et al. Inflammasome activation contributes to interleukin-23 production in response to Clostridium difficile. mBio 6, e02386–e02314 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Dudakov, J. A., Hanash, A. M. & van den Brink, M. R. Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hasegawa, M. et al. Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage. Immunity 41, 620–632 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Aroniadis, O. C. & Brandt, L. J. Fecal microbiota transplantation: past, present and future. Curr. Opin. Gastroenterol. 29, 79–84 (2013).

    PubMed  Google Scholar 

  97. Smits, L. P., Bouter, K. E., de Vos, W. M., Borody, T. J. & Nieuwdorp, M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145, 946–953 (2013).

    PubMed  Google Scholar 

  98. Backhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 852 (2015).

    CAS  PubMed  Google Scholar 

  99. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Khoruts, A. First microbial encounters. Nat. Med. 22, 231–232 (2016).

    CAS  PubMed  Google Scholar 

  101. Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J. Clin. Invest. 124, 4212–4218 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. US National Library of Science. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02269150 (2016).

  104. Stripling, J. et al. Loss of vancomycin-resistant enterococcus fecal dominance in an organ transplant patient with Clostridium difficile colitis after fecal microbiota transplant. Open Forum Infect Dis 2, ofv078 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449, 811–818 (2007).

    CAS  PubMed  Google Scholar 

  106. Smith, M. B., Kelly, C. & Alm, E. J. Policy: how to regulate faecal transplants. Nature 506, 290–291 (2014).

    PubMed  Google Scholar 

  107. Bakken, J. S. et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9, 1044–1049 (2011).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported in part by the NIH Grant 1R21-AI114722-01 and Minnesota's Discovery, Research and Innovation Economy grant.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made substantial discussions to content and reviewed/edited the manuscript before submission. A.K. researched data and wrote the article.

Corresponding author

Correspondence to Alexander Khoruts.

Ethics declarations

Competing interests

A.K. and M.J.S. have received research grant support from Crestovo, a company working to commercialize faecal microbiota transplantation. A.K. and M.J.S. have also filed a patent application that relates to the composition and methods for transplantation of colon microbiota.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoruts, A., Sadowsky, M. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol 13, 508–516 (2016). https://doi.org/10.1038/nrgastro.2016.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing