Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genesis and evolution of homeobox gene clusters

Key Points

  • Hox, ParaHox and NK genes are related ANTP-class homeobox genes that are organized into chromosomal clusters in several metazoan lineages. Both Hox and ParaHox clusters are thought to have arisen by duplication and divergence from an ancient ProtoHox cluster that was present in an ancestral animal.

  • Phylogenetic and chromosomal reconstructions indicate that the Hox and ParaHox clusters, as well as other ANTP homeobox classes (Evx, Meox, Gbx, Mnx and En) originated after successive gene duplications and chromosomal breakages from a founder ProtoHox-like gene.

  • A large array of ANTP-class homeobox genes — the homeobox megacluster that includes the Hox, ParaHox and NK clusters — existed early in metazoan evolution. It contained up to 25 homeobox genes, and probably originated before the divergence of cnidarians and bilaterians.

  • An NK cluster of seven homeobox genes existed before the divergence of protostomes and deuterosomes. The organization of the cluster has been maintained largely intact in fruitflies and mosquitoes, but has been split into three in chordates.

  • Hox, ParaHox and NK cluster genes are preferentially expressed in ectodermal, endodermal and mesodermal derivatives, respectively. I speculate that the origin of the three gene clusters was related to the origin, patterning and diversification of the three bilaterian germ layers.

  • The above thesis implies that cnidarians are primitively bilaterian triploblasts; that these gene clusters have been evolving independently in the distinct clades; and that their present-day functions are a composite of ancestral and derived functions.

  • The selective constraint that has favoured the maintenance of homeobox gene clustering is probably the need for close gene linkage; this would enable sequential chromatin decondensation and thereby allow the temporal deployment of gene expression.

  • The linkage constraint is maintained for the Hox and ParaHox clusters in animals that have a slow mode of development, and for the NK cluster in insects. In the lineages for which the constraint has disappeared, the clusters tend to disintegrate by phylogenetic inertia.

Abstract

Once called the 'Rosetta stone' of developmental biology, the homeobox continues to fascinate both evolutionary and developmental biologists. The birth of the homeotic, or Hox, gene cluster, and its subsequent evolution, has been crucial in mediating the major transitions in metazoan body plan. Comparative genomics studies indicate that the more recently discovered ParaHox and NK clusters were linked to the Hox cluster early in evolution, and that together they constituted a 'megacluster' of homeobox genes that conspicuously contributed to body-plan evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genesis and evolution of Hox and ParaHox clusters.
Figure 2: The NK cluster.
Figure 3: The homeobox megacluster.

Similar content being viewed by others

References

  1. McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. Cell 68, 283–302 (1992).

    Article  CAS  Google Scholar 

  2. Duboule, D. Temporal collinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development Suppl. 135–142 (1994).

  3. Kmita, M. & Duboule, D. Organizing axes in time and space: 25 years of collinear tinkering. Science 301, 331–333 (2003).

    Article  CAS  Google Scholar 

  4. Hurst, L. D., Pá l, C. & Lercher, M. J. The evolutionary dynamics of eukaryotic gene order. Nature Rev. Genet. 5, 299–310 (2004).

    Article  CAS  Google Scholar 

  5. Brooke, N. M., Garcia-Fernà ndez, J. & Holland, P. W. H. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392, 920–922 (1998).

    Article  CAS  Google Scholar 

  6. Holland, L. Z. Non-neural ectoderm is really neural: evolution of developmental patterning mechanisms in the non-neural ectoderm of chordates and the problem of sensory cell homologies. J. Exp. Zool. B 304B, 1–20 (2005).

    Article  Google Scholar 

  7. Jagla, K., Bellard, M. & Frasch, M. A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. Bioessays 23, 125–133 (2001). This paper presents a complete description of linkage information and expression data for the NK cluster genes in D. melanogaster , the organism in which temporal collinearity of the NK cluster genes in the mesoderm was first noticed.

    Article  CAS  Google Scholar 

  8. Martínez, P. & Amemiya, C. T. Genomics of the HOX gene cluster. Comp. Biochem. Physiol. B 133, 571–580 (2002).

    Article  Google Scholar 

  9. Prince, E. The Hox paradox: more complex(s) than imagined. Dev. Biol. 249, 1–15 (2002).

    Article  CAS  Google Scholar 

  10. Ferrier, D. E. K. & Minguillón, C. Evolution of the Hox/ParaHox gene clusters. Int. J. Dev. Biol. 47, 605–611 (2003).

    CAS  PubMed  Google Scholar 

  11. de Rosa, R. et al. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399, 772–776 (1999).

    Article  CAS  Google Scholar 

  12. Powers, T. P. & Amemiya, C. T. Evidence for a Hox14 paralog group in vertebrates. Curr. Biol. 14, R183–R184 (2004).

    Article  CAS  Google Scholar 

  13. Minguillón C. et al. No more than 14: the end of the amphioxus Hox cluster. Int. J. Biol. Sci. 1, 19–23 (2005).

    Article  Google Scholar 

  14. Hooman, K., Moghadam, H. K., Ferguson, M. M. & Danzmann, R. G. Organization of Hox clusters in rainbow trout (Oncorhynchus mykiss): a tetraploid model species. J. Mol. Evol. 30 Sep 2005 ( 10.1007/s00239-004-0338-7).

  15. Cook, C. E., Jimé nez, E., Akam, M. & Saló, E. The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evol. Dev. 6, 154–163 (2004).

    Article  CAS  Google Scholar 

  16. Baguñà, J. & Riutort, M. The dawn of bilaterian animals. The case of acoelomorph flatworms. Bioessays 26, 1046–1057 (2004).

    Article  Google Scholar 

  17. Finnerty, J. R., Pang, K., Burton, P., Paulson, D. & Martindale, M. Q. Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science 304, 1335–1337 (2004).

    Article  CAS  Google Scholar 

  18. Ferrier, D. E. K. & Holland, P. W. H. Sipunculan ParaHox genes. Evol. Dev. 3, 263–270 (2001).

    Article  CAS  Google Scholar 

  19. Ferrier. D. E. K. & Holland, P. W. H. Ciona intestinalis ParaHox genes: evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal colinearity. Mol. Phylogenet. Evol. 24, 412–417 (2001).

    Article  Google Scholar 

  20. Edvardsen, R. B. et al. Remodelling of the homeobox gene complement in the tunicate Oikopleura dioica. Curr. Biol. 15, R12–R13 (2005).

  21. Finnerty, J. R. & Martindale, M. Q. Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria. Evol. Dev. 1, 16–23 (1999).

    Article  CAS  Google Scholar 

  22. Ferrier, D. E. K. & Holland, P. W. H. Ancient origin of the Hox gene cluster. Nature Rev. Genet. 2, 33–38 (2001).

    Article  CAS  Google Scholar 

  23. Dush. M. K. & Martin, G. R. Analysis of mouse Evx genes: Evx-1 displays graded expression in the primitive streak. Dev. Biol. 151, 273–287 (1992).

    Article  CAS  Google Scholar 

  24. Miller, D. J. & Miles, A. Homeobox genes and the zootype. Nature 365, 215–216 (1993).

    Article  CAS  Google Scholar 

  25. Banerjee-Basu, S. & Baxevanis, A. D. Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res. 29, 3258–3269 (2001).

    Article  CAS  Google Scholar 

  26. Minguillón. C. & Garcia-Fernàndez, J. Genesis and evolution of the Evx and Mox genes and the extended Hox and ParaHox gene clusters. Genome Biol. 4, R12 (2003).

    Article  Google Scholar 

  27. Garcia-Fernàndez, J. Hox, ParaHox, ProtoHox: facts and guesses. Heredity 94, 145–152 (2005).

    Article  Google Scholar 

  28. Seo, H. C. et al. (2004). Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431, 67–71 (2004). This paper describes the Hox complement of the Urochordate Oikopleura dioica , an animal that has a compact genome, and shows that the Hox cluster is dispersed across the genome. Although no Hox gene is linked to any other (in that they are at least 250 kb apart), there is still evidence for some residual spatial collinearity of expression.

    Article  CAS  Google Scholar 

  29. Matsui, T., Hirai, M., Hirano, M. & Kurosawa, Y. The HOX complex neighbored by EVX gene, as well as two other homoebox-containing genes, the GBX-class and the EN-class, are located on the same chormosomes 2 and 7. FEBS Lett. 336, 107–110 (1993).

    Article  CAS  Google Scholar 

  30. Pollard, S. & Holland, P. W. H. Evidence for 14 homeobox gene clusters in human genome ancestry. Curr. Biol. 10, 1059–1062 (2000).

    Article  CAS  Google Scholar 

  31. Castro, L. F. & Holland, P. W. H. Chromosomal mapping of ANTP class homeobox genes in amphioxus: piecing together ancestral genomes. Evol. Dev. 5, 459–465 (2003). The authors analyse the linkage of Hox, ParaHox and NK genes in the cephalochordate amphioxus, and confirm that the pre-duplicative amphioxus genome contains the three main blocks of genes, which are similar in organization to the ancestral chordate condition that has been deduced from the human genome.

    Article  CAS  Google Scholar 

  32. Kim, Y. & Nirenberg, M. Drosophila NK-homeobox genes. Proc. Natl Acad. Sci. USA 86, 7716–7720 (1989).

    Article  CAS  Google Scholar 

  33. Jagla, K., et al. ladybird, a tandem of homeobox genes that maintain late wingless expression in terminal and dorsal epidermis of the Drosophila embryo. Development 124, 91–100 (1997).

    CAS  PubMed  Google Scholar 

  34. Luke, G. N. et al. Dispersal of NK homeobox gene clusters in amphioxus and humans. Proc. Natl Acad. Sci. USA 100, 5292–5295 (2003). This study shows that the composition of the NK gene cluster in the pre-duplicative amphioxus genome is broken at the same positions as in the vertebrate clusters. The authors conclude that the constraints to maintain linkage in chordates have been relaxed, whereas a strong functional constraint must be present in D. melanogaster.

    Article  CAS  Google Scholar 

  35. Gauchat, D. et al. Evolution of Antp-class genes and differential expression of Hydra Hox/ParaHox genes in anterior patterning. Proc. Natl Acad. Sci. USA 97, 4493–4498 (2000).

    Article  CAS  Google Scholar 

  36. Manuel, M. & LeParco, Y. Homeobox gene diversification in the calcareous sponge Sycon raphanus. Mol. Phyl. Evol. 17, 97–107 (2000).

    Article  CAS  Google Scholar 

  37. Coutinho, C., Fonseca, R. N., Mansure, J. J. & Borojevic, R. Early steps in the evolution of multicellularity: deep structural and functional homologies among homeobox genes in sponges and higher metazoans. Mech. Dev. 120, 429–440 (2003).

    Article  CAS  Google Scholar 

  38. Hill, A., Tetrault, J. & Hill, M. Isolation and expression analysis of a poriferan Antp-class Bar-/Bsh-like homeobox gene. Dev. Genes. Evol. 214, 515–523 (2004). This article includes a recent update on and the phylogenetic analyses of all known ANTP-class homeobox genes in sponges.

    CAS  PubMed  Google Scholar 

  39. Lowe, C. J. et al. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113, 853–865 (2003).

    Article  CAS  Google Scholar 

  40. Freund, J. N, Domon-Dell, C., Kedinger, M. & Duluc, I. The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem. Cell Biol. 76, 957–969 (1998).

    Article  CAS  Google Scholar 

  41. Moreno, E. & Morata, G. Caudal is the Hox gene that specifies the most posterior Drosophila segment. Nature 26, 873–877 (1999).

    Article  Google Scholar 

  42. Offield, M. F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996).

    CAS  PubMed  Google Scholar 

  43. Wysocka-Diller, J., Aisemberg, G. O. & Macagmo, E. R. A novel homeobox cluster expressed in repeated structures of the midgut. Dev. Biol. 171, 439–447 (1995).

    Article  CAS  Google Scholar 

  44. Weiss, J. B. et al. Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev. 12, 3591–3602 (1998)

    Article  CAS  Google Scholar 

  45. Holland, P. W. H. Beyond the Hox: how widespread is homeobox gene clustering? J. Anat. 199, 13–23 (2001).

    Article  CAS  Google Scholar 

  46. Rosanas-Urgell, A., Marfany, G. & Garcia-Fernàndez, J. Pdx1-related homeodomain transcription factors are distinctly expressed in adult pancreatic islets. Mol. Cell. Endocrinol. 237, 59–66 (2005).

    Article  CAS  Google Scholar 

  47. Grapin-Botton, A. & Melton, D. A. Endoderm development: from patterning to organogenesis. Trends Genet. 16, 124–130 (2000).

    Article  CAS  Google Scholar 

  48. Schafer, K., Neuhaus, P., Kruse, J. & Braun, T. The homeobox gene Lbx1 specifies a subpopulation of cardiac neural crest necessary for normal heart development. Circ. Res. 10, 73–80 (2003).

    Article  Google Scholar 

  49. Reecy, J. M. et al. Chicken Nkx-2.8: a novel homeobox gene expressed in early heart progenitor cells and pharyngeal pouch-2 and-3 endoderm. Dev. Biol. 188, 295–311 (1997).

    Article  CAS  Google Scholar 

  50. Pera, E. M. & Kessel, M. Demarcation of ventral territories by the homeobox gene NKX2.1 during early chick development. Dev. Genes Evol. 208, 168–171 (1998).

    Article  CAS  Google Scholar 

  51. Martindale. M. Q., Pang, K. & Finnerty. J. R. Investigating the origins of triploblasty: 'mesodermal' expression in a diplobastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131, 2463–2474 (2004). Based on expression data from anthozoan embryos, the authors argue in favour of a primitively diploblastic origin of cnidarians, and discuss the possibility that cnidarians are simplified triploblasts.

    Article  CAS  Google Scholar 

  52. Seipel, K. & Schmid, V. Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev. Biol. 282, 14–26 (2005). Based on data from jellyfish the authors argue in favour of a triplobastic origin of cnidarians.

    Article  CAS  Google Scholar 

  53. Stephenson, T. A. The British Sea Anemones Vol. 1 (Ray Society, London, 1928).

    Google Scholar 

  54. Hyman, L. H. The Invertebrates. Protozoa Through Ctenophra (McGraw-Hill, New York (1940).

    Google Scholar 

  55. Hayward, D. C. et al. Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proc. Natl Acad. Sci. USA 99, 8106–8111 (2002).

    Article  CAS  Google Scholar 

  56. Finnerty, J. R. The origins of axial patterning in the metazoa: how old is bilateral symmetry? Int. J. Dev. Biol. 47, 523–529 (2003).

    PubMed  Google Scholar 

  57. Muller, W. E. et al. Bauplan of urmetazoa: basis for genetic complexity of metazoa. Int. Rev. Cytol. 235, 53–92 (2004).

    Article  Google Scholar 

  58. Maldonado, M. Choanoflagellates, choanocytes, and animal multicellularity. Inv. Biol. 123, 1–22 (2004). This data-rich paper summarizes the embryology of sponges. The author provocatively suggests that higher metazoans are derived from the complex larval stages of sponges, and that some sort of bilaterality is already present in sponge embryogenesis.

    Article  Google Scholar 

  59. Jakob, W. et al. The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev. Genes Evol. 214, 170–175 (2004).

    Article  CAS  Google Scholar 

  60. King, N., Hittinger, C. T. & Carroll, S. B. Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301, 361–363 (2003).

    Article  CAS  Google Scholar 

  61. Brooke, M. N. & Holland, P. W. H. The evolution of multicellularity and early animal genomes. Curr. Opin. Genet. Dev. 13, 599–603 (2003).

    Article  CAS  Google Scholar 

  62. Finnerty, J. R., Paulson, D., Burton, P., Pang, K. & Martindale, M. Q. Early evolution of a homeobox gene: the parahox gene Gsx in the Cnidaria and the Bilateria. Evol. Dev. 4, 331–345 (2003).

    Article  Google Scholar 

  63. Oliver, B. & Mistelli, T. A non-random walk through the genome. Genome Biol. 6, 214 (2005).

    Article  Google Scholar 

  64. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  CAS  Google Scholar 

  65. Spitz, F., Gonzalez, F. & Duboule, D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405–417 (2003).

    Article  CAS  Google Scholar 

  66. Zákany, J., Kmita, M. & Duboule, D. A dual role for Hox genes in limb anterior-posterior assymetry. Science 304, 1669–1672 (2004). Elegantly engineered mice led Duboule's team to identify a further global regulator of the Hox cluster that is involved in the embryonic development of the limb, and to propose that there is more than one class of collinearity.

    Article  Google Scholar 

  67. Chambeyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 10, 1119–1130 (2004).

    Article  Google Scholar 

  68. Chambeyron, S., Da Silva, N. R., Lawson, K. A. & Bikmore, W. A. Nuclear re-organisation of the HoxB complex during mouse embryonic development. Development 132, 2215–2223 (2005).

    Article  CAS  Google Scholar 

  69. Ikuta, T., Yoshida, N., Satoh, N. & Saiga, H. Ciona intestinalis Hox gene cluster: its dispersed structure and residual colinear expression in development. Proc. Natl Acad. Sci. USA 101, 15118–15123 (2004).

    Article  CAS  Google Scholar 

  70. Arenas-Mena, C., Cameron, A. R. & Davidson, E. H. Spatial expression of the Hox complex in the indirect development of a sea urchin. Proc. Natl Acad. Sci. USA 95, 13062–13067 (1998).

    Article  CAS  Google Scholar 

  71. Cameron, R. A. et al. Unusual gene order and organization of the sea urchin Hox cluster. J. Exp. Zool. Part B 22 Aug 2005 (10.1002/jez.b.21070).

  72. Lewis, E. B., Pfeiffer, B. D., Mathog, D. R. & Celniker, S. E. Evolution of the homeobox complex in the Diptera. Curr. Biol. 13, R587–R588 (2003).

    Article  CAS  Google Scholar 

  73. Negre, B., et al. Conservation of regulatory sequences and gene expression patterns in the disintegrating Drosophila Hox gene complex. Genome Res. 15, 692–700 (2005). The breakage point in distinct Drosophila species indicates that the Hox cluster in insects is disintegrating by phylogenetic inertia, as selective pressure for temporal collinearity is absent. The comparision of full Hox cluster sequences indicates that the breakages do not disrupt individual enhancers, which are generally located at the 5′ end of each Hox gene.

    Article  CAS  Google Scholar 

  74. Yasukochi, Y. et al. Organization of the Hox gene cluster of the silkworm, Bombyx mori: a split of the Hox cluster in a non-Drosophila insect. Dev. Genes Evol. 21, 606–614 (2004).

    Article  Google Scholar 

  75. Aboobaker, A. A. & Blaxter, M. L. Hox gene loss during dynamic evolution of the nematode cluster. Curr. Biol. 13, 37–40 (2003).

    Article  CAS  Google Scholar 

  76. Spitz, F. & Duboule, D. Reproduction in clusters. Nature 434, 715–716 (2005).

    Article  CAS  Google Scholar 

  77. MacLean, J. A., et al. Rhox: a new homeobox gene cluster. Cell 120, 369–382 (2005).

    Article  CAS  Google Scholar 

  78. Gilbert S. F. Opening Darwin's black box: teaching evolution through developmental genetics: Nature Rev. Genet. 4, 735–741 (2003).

    Article  CAS  Google Scholar 

  79. Holland, N. D. Early cental nervous system evolution: an era of skin brains? Nature Rev. Neurosci. 4, 617–627 (2003).

    Article  CAS  Google Scholar 

  80. Luke, G. N. The Amphioxus NK Cluster. Thesis, Univ. Reading, UK (2004).

    Google Scholar 

Download references

Acknowledgements

I am very grateful to P. Holland, J. Baguñà, C. Minguillón and the members of the Barcelona Evo-Devo group for passionate discussions. I especially thank G. Luke for allowing me to use and cite his Ph.D. Thesis, and R. Rycroft for checking the English. The author's research is funded by the Ministerio de Educación y Ciencia, Spain, by the Departament d'Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya (Distinció per la Promoció de la Recerca Universitaria), and by the European Community's 'Neurogenome' Human Potential Programme.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ATNP

bap

Cdx

En

Evx

Gbx

Gsh

Ipf1

Meox

slou

tin

UBX

vnd

FURTHER INFORMATION

Expert Protein Analysis System (ExPASy)

FlyBase

GenBank

Human Genome Organization

Jordi Garcia's web page

Glossary

BILATERIANS

Members of the animal kingdom that have bilateral symmetry — the property of having two similar sides, with definite upper and lower surfaces, and anterior and posterior ends. They include acoelomorphs, protostomes and deuterostomes.

CNIDARIANS

Radially symmetrical animals that have sac-like bodies with only one opening. They include jellyfish, corals, hydra and anemones.

METAZOAN

A multicellular animal.

MACRO EVOLUTIONARY EVENTS

Evolutionary processess that occur above the species level; for example, the origin of phyla and changes in body-plan organization.

THROUGH-GUT

A gut that has two openings: a mouth and an anus.

TRIPLOBLASTIC

An animal that has three primary germ layers: the ectoderm, endoderm and mesoderm. Triploblasts include acoelomorphs, protostomes and deuterostomes.

CHORDATES

The members of a phylum of animals (the Chordata) that is characterized by the possession of a notochord. It includes urochordates (such as the ascidians), cephalochordates (amphioxus) and vertebrates.

PROTOSTOMES

One of the main groups of bilaterally symmetrical animals. The name derives from 'proto' (first) and 'stome' (mouth), because the first opening of the embryo (the blastopore) becomes the definitive mouth.

DEUTEROSTOMES

The second of the two main groups of bilaterally symmetrical animals. The name derives from 'deutero' (second) and 'stome' (mouth), which refers to the origin of the definitive mouth as an opening that is independent from the blastopore of the embryo.

AMPHIOXUS

The invertebrate that is most closely related to vertebrates.

FLUORESCENCE IN SITU HYBRIDIZATION

A technique in which a fluorescently labelled DNA probe is used to detect a particular chromosome or gene with the help of fluorescence microscopy.

DIPLOBLASTIC

An animal that has only two primary germ layers: the ectoderm and the endoderm. Diploblasts include the cnidarians, the ctenophores and — according to some authors — the placozoans and the poriferans.

CAMBRIAN EXPLOSION

The sudden appearance, about 520 million years ago, in the fossil record of many major groups (phyla) of bilaterian animals.

HEMICHORDATES

A phylum of deuterostome marine worms that comprise the enteropneust and pterobranchs.

PLANULA BLASTOPORE

The opening of the planuloid larva. A planula is the swimming larva of cnidarians. Its ciliated epidermis covers either a solid or a hollowed-out mass of endoderm cells. The blastopore will develop into the oral opening of the polyp.

NEOTENOUS

The term neoteny describes the retention of juvenile characteristics in the adult of an animal species.

PLACOZOANS

Simple balloon-like marine animals with a body cavity that is filled with pressurized fluid. They lack most organs and tissues, including a nervous system, They are either the simplest metazoans, or simplified forms of more complex animals. Only a single species (Trichoplax adhaerens) comprises the phylum Placozoa.

CHOANOCYTES

Flagellated cells that line the body cavity of a sponge and that are characterized by a collar of cytoplasm surrounding the flagellum. They are also called collar cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Fernàndez, J. The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6, 881–892 (2005). https://doi.org/10.1038/nrg1723

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing