Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CMOS-compatible integrated optical hyper-parametric oscillator

Abstract

Integrated multiple-wavelength laser sources, critical for important applications such as high-precision broadband sensing and spectroscopy1, molecular fingerprinting2, optical clocks3 and attosecond physics4, have recently been demonstrated in silica and single-crystal microtoroid resonators using parametric gain2,5,6. However, for applications in telecommunications7 and optical interconnects8, analogous devices compatible with a fully integrated platform9 do not yet exist. Here, we report a fully integrated, CMOS-compatible, multiple-wavelength source. We achieve optical ‘hyper-parametric’ oscillation in a high-index silica-glass microring resonator10 with a differential slope efficiency above threshold of 7.4% for a single oscillating mode, a continuous-wave threshold power as low as 54 mW, and a controllable range of frequency spacing from 200 GHz to more than 6 THz. The low loss, design flexibility and CMOS compatibility of this device will enable the creation of multiple-wavelength sources for telecommunications, computing, sensing, metrology and other areas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device schematic and linear optical transmission spectra.
Figure 2: Experimental set-up for pumping the integrated hyper-parametric oscillator.
Figure 3: Output spectra of the hyper-parametric oscillator.
Figure 4: Output power in the drop port waveguide of the hyper-parametric oscillator for the single oscillating mode at 1,596.98 nm versus pump power (at 1,544.15 nm).
Figure 5: Output spectra of the hyper-parametric oscillator.

Similar content being viewed by others

References

  1. Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    Article  ADS  Google Scholar 

  2. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  3. Diddams, S. A. et al. An optical clock based on a single trapped 199Hg+ ion. Science 293, 825–828 (2001).

    Article  ADS  Google Scholar 

  4. Goulielmakis, E. et al. Attosecond control and measurement: lightwave electronics. Science 317, 769–775 (2007).

    Article  ADS  Google Scholar 

  5. Del'Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 053903 (2008).

    Article  ADS  Google Scholar 

  6. Grudinin, I. S., Yu, N. & Maleki, L. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett. 34, 878–880 (2009).

    Article  ADS  Google Scholar 

  7. Alduino, A. & Paniccia, M. Interconnects: wiring electronics with light. Nature Photon. 1, 153–155 (2007).

    Article  ADS  Google Scholar 

  8. Miller, D. A. B. Optical interconnects to silicon. IEEE J. Sel. Top. Quant. Electron. 6, 1312–1317 (2000).

    Article  ADS  Google Scholar 

  9. Izhaky, N. et al. Development of CMOS-compatible integrated silicon photonics devices. IEEE J. Sel. Top. Quant. Electron. 12, 1688–1698 (2006).

    Article  ADS  Google Scholar 

  10. Ferrera, M. et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nature Photon. 2, 737–740 (2008).

    Article  ADS  Google Scholar 

  11. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    Article  ADS  Google Scholar 

  12. Diddams, S. A. et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102–5105 (2000).

    Article  ADS  Google Scholar 

  13. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  14. Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    Article  ADS  Google Scholar 

  15. Carmon, T. & Vahala, K. J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nature Phys. 3, 430–435 (2007).

    Article  ADS  Google Scholar 

  16. Agha, I. H., Okawachi, Y., Foster, M. A., Sharping, J. E. & Gaeta, A. L. Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres. Phys. Rev. A 76, 043837 (2007).

    Article  ADS  Google Scholar 

  17. Eggleton, B. J., Radic, S. & Moss, D. J. Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools Ch. 20 (Academic Press, 2008).

    Google Scholar 

  18. Jalali, B. & Fathpour, S. Silicon photonics. J. Lightwave Technol. 24, 4600–4615 (2006).

    Article  ADS  Google Scholar 

  19. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  ADS  Google Scholar 

  20. Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    Article  ADS  Google Scholar 

  21. Turner, A. C., Foster, M. A., Gaeta, A. L. & Lipson, M. Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express 16, 4881–4887 (2008).

    Article  ADS  Google Scholar 

  22. Duchesne, D. et al. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt. Express 17, 1865–1870 (2009).

    Article  ADS  Google Scholar 

  23. Gondarenko, A., Levy, J. S. & Lipson, M. High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express 17, 11366–11370 (2009).

    Article  ADS  Google Scholar 

  24. Ikeda, K. et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express 16, 12987–12994 (2008).

    Article  ADS  Google Scholar 

  25. Levy, J. S. et al. Conference on Lasers and Electro-Optics (CLEO) Postdeadline Paper CPDPB8, Baltimore, MD, May (2009).

  26. Ferrera, M. et al. Low power four-wave mixing in an integrated, microring resonator with Q = 1.2 million. Opt. Express 17, 14098–14103 (2009).

    Article  ADS  Google Scholar 

  27. Luan, F. et al. Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals. Opt. Express 17, 3514–3520 (2009).

    Article  ADS  Google Scholar 

  28. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  29. Murphy, M. T. et al. High-precision wavelength calibration with laser frequency combs. Mon. Not. R. Astron. Soc. 380, 839–847 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) Centres of Excellence program, the FQRNT (Le Fonds Québécois de la Recherche sur la Nature et les Technologies), the Natural Sciences and Engineering Research Council of Canada (NSERC), NSERC Strategic Projects and the Institut National de la Recherche Scientifique (INRS). L.R. would like to acknowledge a Marie Curie Outgoing International Fellowship (contract no. 040514). The authors are also grateful to M. Liscidini, M. Lamont and J. Sipe for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.R., D.J.M. and R.M. provided management oversight for this project, designed the experiments and analysed the data. L.R. also carried out the measurements. D.D. and M.F. designed the experiments, carried out the measurements and analysed the data. S.C. and B.E.L. designed and fabricated the devices. All authors contributed to the final manuscript.

Corresponding authors

Correspondence to L. Razzari or D. J. Moss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razzari, L., Duchesne, D., Ferrera, M. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon 4, 41–45 (2010). https://doi.org/10.1038/nphoton.2009.236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing