Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exchange-coupled magnetic nanoparticles for efficient heat induction

Abstract

The conversion of electromagnetic energy into heat by nanoparticles has the potential to be a powerful, non-invasive technique for biotechnology applications such as drug release1,2,3, disease treatment4,5,6 and remote control of single cell functions7,8,9, but poor conversion efficiencies have hindered practical applications so far10,11. In this Letter, we demonstrate a significant increase in the efficiency of magnetic thermal induction by nanoparticles. We take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the nanoparticle and maximize the specific loss power, which is a gauge of the conversion efficiency. The optimized core–shell magnetic nanoparticles have specific loss power values that are an order of magnitude larger than conventional iron-oxide nanoparticles. We also perform an antitumour study in mice, and find that the therapeutic efficacy of these nanoparticles is superior to that of a common anticancer drug.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup, measurements and simulations of SLP of magnetic nanoparticles.
Figure 2: TEM analyses and magnetic measurements of core–shell nanoparticles.
Figure 3: SLP comparison of magnetic nanoparticles.
Figure 4: In vivo hyperthermia treatment of cancer.

Similar content being viewed by others

References

  1. Timko, B. P. et al. Advances in drug delivery. Ann. Rev. Mater. Res. 41, 3.1–3.20 (2011).

    Article  Google Scholar 

  2. Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Mater. 8, 935–939 (2009).

    Article  CAS  Google Scholar 

  3. Liu, T. Y., Hub, S. H., Liu, D. M., Chen, S. Y. & Chen, I. W. Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4, 52–65 (2009).

    Article  CAS  Google Scholar 

  4. Cherukuri, P., Glazer, E. S. & Curley, S. A. Targeted hyperthermia using metal nanoparticles. Adv. Drug. Deliv. Rev. 62, 339–345 (2010).

    Article  CAS  Google Scholar 

  5. Kam, N. W. S., O'Connell, M., Wisdom, J. A. & Dai, H. Carbon nanotube as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102, 11600–11605 (2005).

    Article  CAS  Google Scholar 

  6. Thiesen, B. & Jordan, A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 24, 467–474 (2008).

    Article  CAS  Google Scholar 

  7. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nature Nanotech. 5, 602–606 (2010).

    Article  CAS  Google Scholar 

  8. Chen, C. C. et al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 128, 3709–3715 (2006).

    Article  CAS  Google Scholar 

  9. Jordan, A. et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001).

    Article  CAS  Google Scholar 

  10. Hergt, R. & Dutz, S. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 311, 187–191 (2007).

    Article  CAS  Google Scholar 

  11. Hergt, R. et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998).

    Article  CAS  Google Scholar 

  12. Link, S. & El-Sayed, M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409–453 (2000).

    Article  CAS  Google Scholar 

  13. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  CAS  Google Scholar 

  14. Norman, R. S., Stone, J. W., Gole, A., Murphy, C. J. & Sabo-Attwood, T. Photothermal destruction of the bacterium Pseudomonas Ariginosa by gold nanorods. Nano Lett. 8, 302–306 (2008).

    Article  CAS  Google Scholar 

  15. O'Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D. & West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004).

    Article  CAS  Google Scholar 

  16. Loo, C., Lowery, A., Halas, N., West, J. & Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005).

    Article  CAS  Google Scholar 

  17. Stolik, S., Delgado, J. A., Pérez, A. & Anasagasti, L. Measurement of the penetration depths of red and near infrared light in human ‘ex vivo’ tissues. J. Photochem. Photobiol. B: Biology 57, 90–93 (2000).

    Article  CAS  Google Scholar 

  18. Hergt, R., Dutz, S., Müller, R., & Zeisberger, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys.: Condens. Matter 18, S2919–S2934 (2006).

    CAS  Google Scholar 

  19. Fortin, J-P. et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628–2635 (2007).

    Article  CAS  Google Scholar 

  20. Rosensweig, R. E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002).

    Article  CAS  Google Scholar 

  21. Derfus, A. M. et al. Remotely triggered release from magnetic nanoparticles. Adv. Mater. 19, 3932–3936 (2007).

    Article  CAS  Google Scholar 

  22. Thomas, C. R. et al. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J. Am. Chem. Soc. 132, 10623–10625 (2010).

    Article  CAS  Google Scholar 

  23. Levy, A., Dayan, A., Ben-David, M. & Gannot, I. A new thermography-based approach to early detection of cancer utilizing magnetic nanoparticles theory simulation and in vitro validation. Nanomedicine 6, 786–796 (2010).

    Article  CAS  Google Scholar 

  24. Pradhan, P. et al. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J. Biomed. Mater. Res. B 81, 12–22 (2007).

    Article  Google Scholar 

  25. Habib, A. H., Ondeck, C. L., Chaudhary, P., Bockstaller, M. R. & McHenry, M. E. Evaluation of iron–cobalt/ferrite core shell nanoparticles for cancer thermotherapy. J. Appl. Phys. 103, 07A307 (2008).

    Article  Google Scholar 

  26. Kappiyoor, R., Liangruksa, M., Ganguly, R. & Puri, I. K. The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia. J. Appl. Phys. 108, 094702 (2010).

    Article  Google Scholar 

  27. Kneller, E. F. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588–3600 (1991).

    Article  CAS  Google Scholar 

  28. Zeng, H., Li, J., Liu, J. P., Wang, Z. L. & Sun, S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395–398 (2002).

    Article  CAS  Google Scholar 

  29. Jiang, J. S. et al. A new approach for improving exchange-spring magnets. J. Appl. Phys. 97, 10K311 (2005).

    Article  Google Scholar 

  30. Sun, S. H. et al. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004).

    Article  CAS  Google Scholar 

  31. Cullity, B. D. Introduction to Magnetic Materials (Addison-Wesley, 1972).

    Google Scholar 

  32. Jang, J-t. et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. 48, 1234–1238 (2009).

    Article  CAS  Google Scholar 

  33. Hergt, R. et al. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J. Magn. Magn. Mater. 293, 80–86 (2005).

    Article  CAS  Google Scholar 

  34. Gonzales-Weimuller, G., Zeisberger, M. & Krishnan, K. M. Size-dependent heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1947–1950 (2009).

    Article  CAS  Google Scholar 

  35. Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, R167–R181 (2003).

    Article  CAS  Google Scholar 

  36. Ondeck, C. L. et al. Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating. J. Appl. Phys. 105, 07B324 (2009).

    Article  Google Scholar 

  37. Franco, A. & e Silva, F. C. High temperature magnetic properties of cobalt ferrite nanoparticles, Appl. Phys. Lett. 96, 172505 (2010).

    Article  Google Scholar 

  38. Kulkarni, G. U., Kannan, K. R., Arunarkavalli, T. & Rao, C. N. R. Particle-size effects on the value of Tc of MnFe2O4: evidence for finite-size scaling. Phys. Rev. B 49, 724–727 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Creative Research Initiative (2010-0018286), WCU Program (R32-2009-10217) and BK21 Project. The authors thank H. Nah for preliminary SLP measurements and Y. Jo at KBSI for magnetism measurements. K.I.P. was supported by the Stem Cell Research Center and Korea Healthcare Technology R&D Project (A091159).

Author information

Authors and Affiliations

Authors

Contributions

J.C. conceived and designed the experiment. J-H.L, J-t.J., S.H.M., J-G.K. and S-h.N. performed syntheses, characterizations and property measurements of the nanoparticles. J-s.C., I-S.K. and K.I.P. performed in vivo experiments. J-H.L., J-w.K. and J.C. wrote the manuscript.

Corresponding author

Correspondence to Jinwoo Cheon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Jang, Jt., Choi, Js. et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotech 6, 418–422 (2011). https://doi.org/10.1038/nnano.2011.95

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.95

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research