Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Isolation of single-base genome-edited human iPS cells without antibiotic selection

Abstract

Precise editing of human genomes in pluripotent stem cells by homology-driven repair of targeted nuclease–induced cleavage has been hindered by the difficulty of isolating rare clones. We developed an efficient method to capture rare mutational events, enabling isolation of mutant lines with single-base substitutions without antibiotic selection. This method facilitates efficient induction or reversion of mutations associated with human disease in isogenic human induced pluripotent stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ddPCR-based detection of a point mutation in human iPS cells.
Figure 2: Point mutagenesis in human iPS cells.

Similar content being viewed by others

References

  1. da Cunha Santos, G., Shepherd, F.A. & Tsao, M.S. Annu. Rev. Pathol. 6, 49–69 (2011).

    Article  Google Scholar 

  2. Moore, J.R., Leinwand, L. & Warshaw, D.M. Circ. Res. 111, 375–385 (2012).

    Article  CAS  Google Scholar 

  3. Takahashi, K. et al. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  4. Yu, J. et al. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  5. Gaj, T., Gersbach, C.A. & Barbas, C.F. III. Trends Biotechnol. 31, 397–405 (2013).

    Article  CAS  Google Scholar 

  6. Fu, Y. et al. Nat. Biotechnol. 31, 822–826 (2013).

    Article  CAS  Google Scholar 

  7. Gupta, A., Meng, X., Zhu, L.J., Lawson, N.D. & Wolfe, S.A. Nucleic Acids Res. 39, 381–392 (2011).

    Article  CAS  Google Scholar 

  8. Hsu, P.D. et al. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  Google Scholar 

  9. Pattanayak, V., Ramirez, C.L., Joung, J.K. & Liu, D.R. Nat. Methods 8, 765–770 (2011).

    Article  CAS  Google Scholar 

  10. Ding, Q. et al. Cell Stem Cell 12, 238–251 (2013).

    Article  CAS  Google Scholar 

  11. Chen, F. et al. Nat. Methods 8, 753–755 (2011).

    Article  CAS  Google Scholar 

  12. Soldner, F. et al. Cell 146, 318–331 (2011).

    Article  CAS  Google Scholar 

  13. Mali, P. et al. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  Google Scholar 

  14. Ran, F.A. et al. Cell 154, 1380–1389 (2013).

    Article  CAS  Google Scholar 

  15. McCormick, M. Methods Enzymol. 151, 445–449 (1987).

    Article  CAS  Google Scholar 

  16. Hindson, B.J. et al. Anal. Chem. 83, 8604–8610 (2011).

    Article  CAS  Google Scholar 

  17. Cong, L. et al. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  18. Mali, P. et al. Science 339, 823–826 (2013).

    Article  CAS  Google Scholar 

  19. Yusa, K. et al. Nature 478, 391–394 (2011).

    Article  CAS  Google Scholar 

  20. Doyle, E.L. et al. Nucleic Acids Res. 40, W117–W122 (2012).

    Article  CAS  Google Scholar 

  21. Sander, J.D. et al. Nucleic Acids Res. 38, W462–W468 (2010).

    Article  CAS  Google Scholar 

  22. Sander, J.D., Zaback, P., Joung, J.K., Voytas, D.F. & Dobbs, D. Nucleic Acids Res. 35, W599–W605 (2007).

    Article  Google Scholar 

  23. Cermak, T. et al. Nucleic Acids Res. 39, e82 (2011).

    Article  CAS  Google Scholar 

  24. Bedell, V.M. et al. Nature 491, 114–118 (2012).

    Article  CAS  Google Scholar 

  25. Christian, M.L. et al. PLoS ONE 7, e45383 (2012).

    Article  CAS  Google Scholar 

  26. Cong, L., Zhou, R., Kuo, Y.C., Cunniff, M. & Zhang, F. Nature Commun. 3, 968 (2012).

    Article  Google Scholar 

  27. Kreitzer, F.R. et al. Am. Journal Stem Cells 2, 119–131 (2013).

    CAS  Google Scholar 

  28. Okita, K. et al. Nat. Methods 8, 409–412 (2011).

    Article  CAS  Google Scholar 

  29. Watanabe, K. et al. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  Google Scholar 

  30. Grau, J., Boch, J. & Posch, S. Bioinformatics 29, 2931–2932 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Conklin laboratory for technical assistance and critical reading of the manuscript, B.G. Bruneau, D. Srivastava, S. Yamanaka, K. Tomoda, Y. Hayashi, K.E. Eilertson, B.S. Moriarity, D.A. Largaespada and W.A. Weiss for valuable discussions and advice, A.K. Holloway for generating the list of unique CRISPR target sites, K. Carver-Moore for her technical assistance in iPS cell culture on 96-well plates, M. Porteus and M. Rahdar (Stanford University) for providing us with the TALEN backbone plasmid MR015, and members of the Roddenberry Stem Cell Core at Gladstone Institutes for providing a stimulating environment. Y.M. is a recipient of a Japan Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad and the Uehara Memorial Foundation Research Fellowship. L.M.J. is supported by a postdoctoral fellowship, TG2-01160, from the California Institute of Regenerative Medicine. M.H. is supported by a postdoctoral fellowship, PF-13-295-01–TBG, from the American Cancer Society. B.R.C. received support from the US National Heart, Lung, and Blood Institute, National Institutes of Health, U01-HL100406, U01-GM09614, R01-HL108677, U01-HL098179 and R01-HL060664.

Author information

Authors and Affiliations

Authors

Contributions

Y.M. and B.R.C. conceived and designed the experiments. Y.M. and A.H.C. conducted most of the experiments. L.M.J. and J.Y. performed the BAG3 mutagenesis, and J.Y. constructed the PKP2 TALENs. M.H. designed and constructed the PHOX2B TALENs and helped with the Surveyor assays. T.D.N. helped to conceive ddPCR experiments and to construct TALENs. P.P.L. conducted immunofluorescence staining. Y.M., P.-L.S. and B.R.C. wrote the manuscript with support from all authors.

Corresponding author

Correspondence to Bruce R Conklin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, and Supplementary Tables 1, 2, 4 and 5 (PDF 3062 kb)

Supplementary Table 3

On- and off-target sites for the PHOX2B and PRKAG2 TALENs predicted by TALENoffer (XLSX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyaoka, Y., Chan, A., Judge, L. et al. Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat Methods 11, 291–293 (2014). https://doi.org/10.1038/nmeth.2840

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing