Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Image-based transcriptomics in thousands of single human cells at single-molecule resolution

Abstract

Fluorescence in situ hybridization (FISH) is widely used to obtain information about transcript copy number and subcellular localization in single cells. However, current approaches do not readily scale to the analysis of whole transcriptomes. Here we show that branched DNA technology combined with automated liquid handling, high-content imaging and quantitative image analysis allows highly reproducible quantification of transcript abundance in thousands of single cells at single-molecule resolution. In addition, it allows extraction of a multivariate feature set quantifying subcellular patterning and spatial properties of transcripts and their cell-to-cell variability. This has multiple implications for the functional interpretation of cell-to-cell variability in gene expression and enables the unbiased identification of functionally relevant in situ signatures of the transcriptome without the need for perturbations. Because this method can be incorporated in a wide variety of high-throughput image-based approaches, we expect it to be broadly applicable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: bDNA FISH results in bright spots with high signal-to-noise ratio (SNR).
Figure 2: Image-based transcriptomics pipeline.
Figure 3: Image-based transcriptomics is reproducible, sensitive and comparable to RNA-seq.
Figure 4: Minimum number of cells required for reproducible single-cell distributions of transcript abundance.
Figure 5: Quantitative signatures of the in situ transcriptome.

Similar content being viewed by others

References

  1. Brown, P.O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33–37 (1999).

    Article  CAS  Google Scholar 

  2. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).

    Article  CAS  Google Scholar 

  3. Wilhelm, B.T. et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239–1243 (2008).

    Article  CAS  Google Scholar 

  4. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  Google Scholar 

  5. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  Google Scholar 

  6. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    Article  CAS  Google Scholar 

  7. Ramsköld, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  Google Scholar 

  8. Shalek, A.K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).

    Article  CAS  Google Scholar 

  9. Goetz, J.J. & Trimarchi, J.M. Transcriptome sequencing of single cells with Smart-Seq. Nat. Biotechnol. 30, 763–765 (2012).

    Article  CAS  Google Scholar 

  10. Lau, J.Y. et al. Significance of serum hepatitis C virus RNA levels in chronic hepatitis C. Lancet 341, 1501–1504 (1993).

    Article  CAS  Google Scholar 

  11. Kern, D. et al. An enhanced-sensitivity branched-DNA assay for quantification of human immunodeficiency virus type 1 RNA in plasma. J. Clin. Microbiol. 34, 3196–3202 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Player, A.N., Shen, L.P., Kenny, D., Antao, V.P. & Kolberg, J.A. Single-copy gene detection using branched DNA (bDNA) in situ hybridization. J. Histochem. Cytochem. 49, 603–612 (2001).

    Article  CAS  Google Scholar 

  13. Kenny, D., Shen, L. & Kolberg, J.A. Detection of viral infection and gene expression in clinical tissue specimens using branched DNA (bDNA) in situ hybridization. J. Histochem. Cytochem. 50, 1219–1227 (2002).

    Article  CAS  Google Scholar 

  14. Ma, X.-J., Wu, X. & Luo, Y. Biomarkers for differentiating melanoma from benign nevus in the skin. US patent application 20120071343 (2012).

  15. Femino, A.M., Fay, F.S., Fogarty, K. & Singer, R.H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    Article  CAS  Google Scholar 

  16. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  CAS  Google Scholar 

  17. Chartrand, P., Bertrand, E., Singer, R.H. & Long, R.M. Sensitive and high-resolution detection of RNA in situ. Methods Enzymol. 318, 493–506 (2000).

    Article  CAS  Google Scholar 

  18. Bhatt, D.M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).

    Article  CAS  Google Scholar 

  19. Carpenter, A.E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article  Google Scholar 

  20. Raj, A. & Tyagi, S. Detection of individual endogenous RNA transcripts in situ using multiple singly labeled probes. Methods Enzymol. 472, 365–386 (2010).

    Article  CAS  Google Scholar 

  21. So, L.H. et al. General properties of transcriptional time series in Escherichia coli. Nat. Genet. 43, 554–560 (2011).

    Article  CAS  Google Scholar 

  22. Rämö, P., Sacher, R., Snijder, B., Begemann, B. & Pelkmans, L. CellClassifier: supervised learning of cellular phenotypes. Bioinformatics 25, 3028–3030 (2009).

    Article  Google Scholar 

  23. Snijder, B. et al. Single-cell analysis of population context advances RNAi screening at multiple levels. Mol. Syst. Biol. 8, 579 (2012).

    Article  Google Scholar 

  24. Hebenstreit, D. et al. RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Mol. Syst. Biol. 7, 497 (2011).

    Article  Google Scholar 

  25. Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    Article  Google Scholar 

  26. Trcek, T., Larson, D., Moldón, A., Query, C. & Singer, R. Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast. Cell 147, 1484–1497 (2011).

    Article  CAS  Google Scholar 

  27. Buganim, Y. et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150, 1209–1222 (2012).

    Article  CAS  Google Scholar 

  28. Szklarczyk, D. et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2011).

    Article  CAS  Google Scholar 

  29. Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748 (2012).

    Article  CAS  Google Scholar 

  30. Nguyen, Q.N., Lipshutz, R.J. & Ma, Y. Methods of labeling cells, labeled cells, and uses thereof. US patent application 20120178081 (2012).

  31. Levesque, M.J. & Raj, A. Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nat. Methods 10, 246–248 (2013).

    Article  CAS  Google Scholar 

  32. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  33. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  Google Scholar 

  34. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  Google Scholar 

  35. Martinez, W.L. & Martinez, A.R. Computational Statistics Handbook with MATLAB 2nd edn. (CRC Press, 2008).

  36. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge B. Snijder and Y. Yakimovich for help with computational analysis and infrastructure, J. Patterson for assistance, Q. Nguyen and S. Lai from Affymetrix for helpful comments on experimental procedures, J. Ellenberg (European Molecular Biology Laboratory) for reagents, and all members of the lab for useful comments on the manuscript. L.P. acknowledges financial support for this project from SystemsX.ch, the European Union, University of Zurich and University of Zurich Research Priority Program in Systems Biology and Functional Genomics.

Author information

Authors and Affiliations

Authors

Contributions

L.P. initiated the study. N.B., T.S. and L.P. designed and analyzed the experiments and wrote the manuscript. N.B. and T.S. performed the experiments.

Corresponding author

Correspondence to Lucas Pelkmans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1 and 2, Supplementary Protocol and Supplementary Notes 1–6 (PDF 26058 kb)

Supplementary Table 3

High-throughput bDNA sm-FISH comparison to RNA-seq (XLSX 198 kb)

Supplementary Table 4

Features used for gene clustering (XLSX 7511 kb)

Supplementary Table 5

Equipment and settings (XLSX 11 kb)

Supplementary Table 6

Full RNA-seq dataset (XLSX 881 kb)

Supplementary Software

Spots detection and pattern recognition (ZIP 7358 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battich, N., Stoeger, T. & Pelkmans, L. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods 10, 1127–1133 (2013). https://doi.org/10.1038/nmeth.2657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing