Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembled nanoscale biosensors based on quantum dot FRET donors

Abstract

The potential of luminescent semiconductor quantum dots (QDs) to enable development of hybrid inorganic-bioreceptor sensing materials has remained largely unrealized. We report the design, formation and testing of QD–protein assemblies that function as chemical sensors. In these assemblies, multiple copies of Escherichia coli maltose-binding protein (MBP) coordinate to each QD by a C-terminal oligohistidine segment and function as sugar receptors. Sensors are self-assembled in solution in a controllable manner. In one configuration, a β-cyclodextrin-QSY9 dark quencher conjugate bound in the MBP saccharide binding site results in fluorescence resonance energy-transfer (FRET) quenching of QD photoluminescence. Added maltose displaces the β-cyclodextrin-QSY9, and QD photoluminescence increases in a systematic manner. A second maltose sensor assembly consists of QDs coupled with Cy3-labelled MBP bound to β-cyclodextrin-Cy3.5. In this case, the QD donor drives sensor function through a two-step FRET mechanism that overcomes inherent QD donor–acceptor distance limitations. Quantum dot–biomolecule assemblies constructed using these methods may facilitate development of new hybrid sensing materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the ability of MBP-5HIS (C-terminal penta-histidine) to coordinate with QDs as compared with MBP (minus the penta-histidine).
Figure 2: Function and properties of the 560QD-MBP nanosensor.
Figure 3: Excited-state properties of the 560QD-MBP nanosensor.
Figure 4: Function and properties of the 530 QD-MBP-Cy3-β-CD-Cy3.5 nanosensor.
Figure 5: Excited-state properties of the 530QD-MBP-Cy3-β-CD-Cy3.5 nanosensor.
Figure 6: Cutaway schematic depicting critical Förster distances.

Similar content being viewed by others

References

  1. Iqbal, S.S. et al. A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelect. 15, 549–578 ( 2000).

    Article  CAS  Google Scholar 

  2. O'Connell, P.J. & Guilbault, G.G. Future trends in biosensor research. Anal. Lett. 34, 1063–1078 ( 2001).

    Article  CAS  Google Scholar 

  3. De Lorimier, R.M. et al. Construction of a fluorescent biosensor family. Protein Sci. 11, 2655–2675 ( 2002).

    Article  CAS  Google Scholar 

  4. Scheller, F.W., Wollenberger, U., Warsinke, A., & Lisdat, F. Research and development in biosensors. Curr. Opin. Biotech. 12, 35–40 ( 2001).

    Article  CAS  Google Scholar 

  5. Hellinga, H.W. & Marvin, J.S. Protein engineering and the development of generic biosensors. Trends Biotech. 16, 183–189 ( 1998).

    Article  CAS  Google Scholar 

  6. Benson, D.E., Conrad, D.W., de Lorimer, R.M., Trammel, S.A. & Hellinga, H.W. Design of bioelectronic interfaces by exploiting hinge-bending motions of proteins. Science 293, 1641–1644 ( 2001).

    Article  CAS  Google Scholar 

  7. Mattoussi, H. et al. Self-Assembly of CdSE-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12450 ( 2000).

    Article  CAS  Google Scholar 

  8. Bruchez, M., Moronne, J.M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2018 ( 1998).

    Article  CAS  Google Scholar 

  9. Chan, W.C.W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–1028 ( 1998).

    Article  CAS  Google Scholar 

  10. Goldman, E.R. et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 274, 841–847 ( 2002).

    Article  Google Scholar 

  11. Goldman, E.R. et al. Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 122, 6378–6382 ( 2002).

    Article  Google Scholar 

  12. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1761 ( 2002).

    Article  CAS  Google Scholar 

  13. Jaiswal, J.K., Mattoussi, H, Mauro, J.M. & Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotech. 21, 47–51 ( 2003).

    Article  CAS  Google Scholar 

  14. Mattoussi, H, et al. in Optical Biosensors: Present and Future (eds Ligler, F.S. & Rowe Taitt, C.A.). (Elsevier, The Netherlands, 2002).

    Google Scholar 

  15. Akerman, M.E. et al. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12617–12621 ( 2002).

    Article  CAS  Google Scholar 

  16. Wu, X.Y. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotech. 21, 41–46 ( 2003).

    Article  CAS  Google Scholar 

  17. Kagan, C.R., Murray, C.B. & Bawendi, M.G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633–8643 ( 1996).

    Article  CAS  Google Scholar 

  18. Kagan, C.R., Murray, C.B. Nirmal, M. & Bawendi, M.G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76, 1517–1520 ( 1996).

    Article  CAS  Google Scholar 

  19. Crooker, S.A., Hollingsworth, J.A., Tretiak, S. & Klimov, V.I. Sprectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 ( 2002).

    Article  CAS  Google Scholar 

  20. Willard, D.M., Carillo, L.L., Jung, J. & Van Orden, A. CdSe-ZnS Quntum Dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett. 1, 469–474 ( 2001).

    Article  CAS  Google Scholar 

  21. Wang, S., Mamedova, N, Kotov, N.A., Chem, W. & Studer, J. Antigen/antibody immunocomplex from CdTE nanoparticle bioconjugates. Nano Lett. 2, 817–822 ( 2002).

    Article  CAS  Google Scholar 

  22. Gilardi, G., Zhou, L.Q., Hibbert, L. & Cass, A.E. Engineering the maltose binding protein for reagentless fluorescence sensing. Anal. Chem. 66, 3840–3847 ( 1994).

    Article  CAS  Google Scholar 

  23. Marvin, J.S. et al. The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc. Natl Acad. Sci. USA 94, 4366–4371 ( 1997).

    Article  CAS  Google Scholar 

  24. Fehr, M., Frommer, W.B. & Lalonde, S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc. Natl Acad. Sci. USA 99, 9846–9851 ( 2002).

    Article  CAS  Google Scholar 

  25. Medintz, I.L., Goldman, E.R., Lassman, M.E. & Mauro, J.M. A fluorescence resonance energy transfer sensor based on maltose binding protein. Bioconj. Chem. (in the press).

  26. Lakowicz, J.R. Principles of Fluorescence Spectroscopy 2nd edn (Kluwer Academic, New York, 1999).

    Book  Google Scholar 

  27. Flora, B., Gusman, H., Helmerhorst, E.J., Troxler, R.F. & Oppenheim, F.G. A new method for the isolation of histatins 1, 3, and 5 from parotid secretion using zinc precipitation. Protein Expr. Purif. 23, 198–206 ( 2001).

    Article  CAS  Google Scholar 

  28. Mamedova, N.N., Kotov, N.A., Rogach, A.L. & Studer, J. Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett. 1, 281–286 ( 2001).

    Article  CAS  Google Scholar 

  29. Wang, L.Y., Kan, X.W., Zhang, M.C., Zhu, C.Q. & Wang, L. Fluorescence for the determination of protein with functionalized nano-ZnS. The Analyst 127, 1531–1534 ( 2002).

    Article  CAS  Google Scholar 

  30. Hanaki, K. et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Comm. 302, 496–501 ( 2003).

    Article  CAS  Google Scholar 

  31. Sharff, A.J., Rodseth, L.E. & Quicho, F.A. Refined 1.8 Å structure reveals the mode of binding of β–cyclodextrin to the maltodextrin binding protein. Biochemistry 32, 10553–10559 ( 1993).

    Article  CAS  Google Scholar 

  32. Kawahara, S., Uchimaru, T. & Murata, S. Sequential multistep energy transfer: enhancement of efficiency of long-range fluorescence resonance energy transfer. Communication 6, 563–564 ( 1999).

    Google Scholar 

  33. Tong, A.K., Li, Z., Jones, G.S., Russon, J.J. & Ju, J. Combinatorial fluorescence energy transfer tags for multiplex biological assays. Nature Biotech. 19, 756–759 ( 2001).

    Article  CAS  Google Scholar 

  34. Guether, R. & Reddington, M.V. Photostable cyanine dye β-cyclodextrin conjugates. Tetrahedr. Lett. 38, 6167–6170 ( 1997).

    Article  CAS  Google Scholar 

  35. Watrob, H.M., Pan, C.P. & Barkley, M.D. Two-step FRET as a structural tool. J. Am. Chem. Soc. 125, 7336–7343 ( 2003).

    Article  CAS  Google Scholar 

  36. Schafer, F. et al. Automated high-throughput purification of 6XHis-tagged proteins. J. Biomol. Tech. 13, 131–137 ( 2002).

    Google Scholar 

  37. Pathak, S. et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123, 4103–4104 ( 2001).

    Article  CAS  Google Scholar 

  38. Gerion, D. et al. Sorting fluorescent nanocrystals with DNA. J. Am. Chem. Soc. 124, 7070–7074 ( 2002).

    Article  CAS  Google Scholar 

  39. Guo, W., Li, J.J., Wang, Y.A. & Peng, X. Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes:superior chemical, photochemical and thermal stability J. Am. Chem. Soc. 125, 3901–3909 ( 2003).

    Article  CAS  Google Scholar 

  40. Willner, I., Patolsky, F. & Wasserman, J. Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew. Chem. Int. Edn Engl. 40, 1861–1864 ( 2001).

    Article  CAS  Google Scholar 

  41. Lindsey, C.P. & Pattersson, G.D. Detailed comparison of the Williams-Watts and Cole-Davidson functions. J. Chem. Phys. 73, 3348–3357 ( 1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Hellinga and D. Conrad (Duke University) for providing the plasmid with the MBP-HIS-tagged gene sequence used and P.T. Tran for helpful insight. I.L.M. and A.R.C. are supported by National Research Council Fellowships through the Naval Research Laboratory. B.F. acknowledges the National Defense Science and Engineering Graduate Fellowship Program for support. H.M., E.R.G. and J.M.M acknowledge K. Ward at the Office of Naval Research (ONR) for research support and grant number N001400WX20094 for financial support. The views, opinions, and/or findings described in this report are those of the authors and should not be construed as official Department of the Navy positions, policies, or decisions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hedi Mattoussi or J. Matthew Mauro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medintz, I., Clapp, A., Mattoussi, H. et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Mater 2, 630–638 (2003). https://doi.org/10.1038/nmat961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing