Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rigidity sensing and adaptation through regulation of integrin types

Abstract

Tissue rigidity regulates processes in development, cancer and wound healing. However, how cells detect rigidity, and thereby modulate their behaviour, remains unknown. Here, we show that sensing and adaptation to matrix rigidity in breast myoepithelial cells is determined by the bond dynamics of different integrin types. Cell binding to fibronectin through either α5β1 integrins (constitutively expressed) or αvβ6 integrins (selectively expressed in cancer and development) adapts force generation, actin flow and integrin recruitment to rigidities associated with healthy or malignant tissue, respectively. In vitro experiments and theoretical modelling further demonstrate that this behaviour is explained by the different binding and unbinding rates of both integrin types to fibronectin. Moreover, rigidity sensing through differences in integrin bond dynamics applies both when integrins bind separately and when they compete for binding to fibronectin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of αvβ6 integrins alters response to substrate stiffness.
Figure 2: Both binding and unbinding rates to FN are higher for αvβ6 than for α5β1.
Figure 3: Integrin–FN clutch model of force transmission.
Figure 4: Integrin–FN binding dynamics predict force generation, actin flow and integrin recruitment in response to substrate stiffness.

Similar content being viewed by others

References

  1. Wang, H. B., Dembo, M. & Wang, Y. L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell. Physiol. 279, 1345–1350 (2000).

    Article  Google Scholar 

  2. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  3. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 8, 241–254 (2005).

    Article  CAS  Google Scholar 

  4. Ghassemi, S. et al. Cells test substrate rigidity by local contractions on sub-micrometer pillars. Proc. Natl Acad. Sci. USA 109, 5328–5333 (2012).

    Article  CAS  Google Scholar 

  5. Trichet, L. et al. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl Acad. Sci. USA 109, 6933–6938 (2012).

    Article  CAS  Google Scholar 

  6. Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513–1527 (2012).

    Article  CAS  Google Scholar 

  7. Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008).

    Article  CAS  Google Scholar 

  8. Schiller, H. B. et al. beta1- and alphav-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nature Cell Biol. 15, 625–636 (2013).

    Article  CAS  Google Scholar 

  9. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  CAS  Google Scholar 

  10. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).

    CAS  Google Scholar 

  11. Humphries, J. D., Byron, A. & Humphries, M. J. Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903 (2006).

    Article  CAS  Google Scholar 

  12. Kong, F., Garcia, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–1284 (2009).

    Article  CAS  Google Scholar 

  13. Breuss, J. M. et al. Expression of the beta 6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J. Cell Sci. 108, 2241–2251 (1995).

    CAS  Google Scholar 

  14. Allen, M. D. et al. Altered microenvironment promotes progression of pre-invasive breast cancer: Myoepithelial expression of αvβ6 integrin in DCIS identifies high-risk patients and predicts recurrence. Clin. Cancer Res. 20, 344–357 (2014).

    Article  CAS  Google Scholar 

  15. Serra-Picamal, X. et al. Mechanical waves during tissue expansion. Nature Phys. 8, U628–U666 (2012).

    Article  Google Scholar 

  16. Butler, J. P., Tolic-Norrelykke, I. M., Fabry, B. & Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282, C595–C605 (2002).

    Article  CAS  Google Scholar 

  17. Plodinec, M. et al. The nanomechanical signature of breast cancer. Nature Nanotech. 7, 757–765 (2012).

    Article  CAS  Google Scholar 

  18. Roca-Cusachs, P., Gauthier, N. C., del Rio, A. & Sheetz, M. P. Clustering of α5β1 integrins determines adhesion strength whereas αvβ3 and talin enable mechanotransduction. Proc. Natl Acad. Sci. USA 106, 16245–16250 (2009).

    Article  CAS  Google Scholar 

  19. Litvinov, R. I. et al. Resolving two-dimensional kinetics of the integrin alphaIIbbeta3-fibrinogen interactions using binding–unbinding correlation spectroscopy. J. Biol. Chem. 287, 35275–35285 (2012).

    Article  CAS  Google Scholar 

  20. Bangasser, B. L., Rosenfeld, S. S. & Odde, D. J. Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment. Biophys. J. 105, 581–592 (2013).

    Article  CAS  Google Scholar 

  21. Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  CAS  Google Scholar 

  22. Riveline, D. et al. Focal contact as mechanosensor: Directional growth in response to local strain. Mol. Biol. Cell 10, 341A (1999).

    Google Scholar 

  23. sun, L., Cheng, Q. H., Gao, H. J. & Zhang, Y. W. Effect of loading conditions on the dissociation behaviour of catch bond clusters. J. R. Soc. Interf. 9, 928–937 (2012).

    Article  CAS  Google Scholar 

  24. Novikova, E. A. & Storm, C. Contractile fibers and catch-bond clusters: A biological force sensor? Biophys. J. 105, 1336–1345 (2013).

    Article  CAS  Google Scholar 

  25. Roca-Cusachs, P., Iskratsch, T. & Sheetz, M. P. Finding the weakest link—exploring integrin-mediated mechanical molecular pathways. J. Cell Sci. 125, 3025–3038 (2012).

    Article  CAS  Google Scholar 

  26. Gardel, M. L. et al. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183, 999–1005 (2008).

    Article  CAS  Google Scholar 

  27. Keselowsky, B. G., Collard, D. M. & Garcia, A. J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA 102, 5953–5957 (2005).

    Article  CAS  Google Scholar 

  28. Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C. & Janmey, P. A. Nonlinear elasticity in biological gels. Nature 435, 191–194 (2005).

    Article  CAS  Google Scholar 

  29. Roca-Cusachs, P. et al. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J. 94, 4984–4995 (2008).

    Article  CAS  Google Scholar 

  30. Coussen, F., Choquet, D., Sheetz, M. P. & Erickson, H. P. Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. J. Cell Sci. 115, 2581–2590 (2002).

    CAS  Google Scholar 

  31. Shimaoka, M., Takagi, J. & Springer, T. A. Conformational regulation of integrin structure and function. Ann. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002).

    Article  CAS  Google Scholar 

  32. Roca-Cusachs, P. et al. Integrin-dependent force transmission to the extracellular matrix by alpha-actinin triggers adhesion maturation. Proc. Natl Acad. Sci. USA 110, E1361–E1370 (2013).

    Article  CAS  Google Scholar 

  33. Laukaitis, C. M., Webb, D. J., Donais, K. & Horwitz, A. F. Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153, 1427–1440 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Spanish Ministry for Economy and Competitiveness (BFU2011-23111 and BFU2012-38146), a Career Integration Grant within the seventh European Community Framework Programme (PCIG10-GA-2011-303848), the European Research Council (Grant Agreement 242993), the Generalitat de Catalunya, Fundació La Caixa, Fundació la Marató de TV3 (project 20133330), and the Breast Cancer Campaign Tissue Bank. We thank P. Rodríguez, M. Taulés, L. Bardia, M. Rodríguez, V. González, V. Conte, A. Brugués, D. Zalvidea, D. Navajas, A. del Rio and the members of the X.T. and P.R-C. laboratories for technical assistance and discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.E-A., M.D.A., J.F.M., J.L.J., X.T. and P.R-C. designed research, A.E-A., E.B., I.A., R.O. and R.S. performed experiments, M.D.A., R.S., J.J.G. and P.R-C. contributed new reagents/analytical tools, A.E-A., E.B., M.D.A., J.F.M., J.L.J., X.T. and P.R-C. analysed the data, P.R-C. implemented the computational model, and A.E-A., X.T. and P.R-C. wrote the paper. All authors read the manuscript and commented on it.

Corresponding authors

Correspondence to Xavier Trepat or Pere Roca-Cusachs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2911 kb)

Supplementary Information

Supplementary Movie S1 (AVI 844 kb)

Supplementary Information

Supplementary Movie S2 (AVI 717 kb)

Supplementary Information

Supplementary Movie S3 (AVI 707 kb)

Supplementary Information

Supplementary Movie S4 (AVI 613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elosegui-Artola, A., Bazellières, E., Allen, M. et al. Rigidity sensing and adaptation through regulation of integrin types. Nature Mater 13, 631–637 (2014). https://doi.org/10.1038/nmat3960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing