Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility

Abstract

The high-temperature stability and mechanical properties of refractory molybdenum alloys are highly desirable for a wide range of critical applications. However, a long-standing problem for these alloys is that they suffer from low ductility and limited formability. Here we report a nanostructuring strategy that achieves Mo alloys with yield strength over 800 MPa and tensile elongation as large as ~ 40% at room temperature. The processing route involves a molecular-level liquid–liquid mixing/doping technique that leads to an optimal microstructure of submicrometre grains with nanometric oxide particles uniformly distributed in the grain interior. Our approach can be readily adapted to large-scale industrial production of ductile Mo alloys that can be extensively processed and shaped at low temperatures. The architecture engineered into such multicomponent alloys offers a general pathway for manufacturing dispersion-strengthened materials with both high strength and ductility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of room-temperature tensile behaviour for three different types of Mo alloys.
Figure 2: Comparison of (L–L) mixing and liquid–solid (L–S) mixing processes and resulting microstructures.
Figure 3: TEM images showing the microstructures of ODS-Mo and NS-Mo.
Figure 4: Distribution of grain and particle sizes.
Figure 5: Yield strength versus total tensile elongation of NS-Mo in comparison with available literature data.

Similar content being viewed by others

References

  1. Perepezko, J. H. The hotter the engine, the better. Science 326, 1068–1069 (2009).

    Article  CAS  Google Scholar 

  2. Dimiduk, D. M. & Perepezko, J. H. Mo-Si-B alloys: Developing a revolutionary turbine-engine material. Mater. Res. Soc. Bull. 9, 639–645 (2003).

    Article  Google Scholar 

  3. El-Genk, M. S. & Tournier, J. M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. J. Nucl. Mater. 340, 93–112 (2005).

    Article  CAS  Google Scholar 

  4. Sturm, D. et al. The influence of silicon on the strength and fracture toughness of molybdenum. Mater. Sci. Eng. 463, 107–114 (2007).

    Article  Google Scholar 

  5. Wadsworth, J., Nieh, T. G. & Stephens, J. J. Recent advances in aerospace refractory-metal alloys. Int. Mater. Rev. 33, 131–150 (1988).

    Article  CAS  Google Scholar 

  6. Cockeram, B. V. The fracture toughness and toughening mechanism of commercially available unalloyed molybdenum and oxide dispersion strengthened molybdenum with an equiaxed, large grain structure. Metall. Mater. Trans. 40A, 2843–2860 (2009).

    Article  CAS  Google Scholar 

  7. Schneibel, J. H., Brady, M. P., Kruzic, J. J. & Ritchie, R. O. On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles. Z. für Metall. 96, 632–637 (2005).

    Article  CAS  Google Scholar 

  8. Cockeram, B. V., Smith, R. W., Hashimoto, N. & Snead, L. L. The swelling, microstructure, and hardening of wrought LCAC, TZM, and ODS molybdenum following neutron irradiation. J. Nucl. Mater. 418, 121–136 (2011).

    Article  CAS  Google Scholar 

  9. Byun, T. S., Li, M., Cockeram, B. V. & Snead, L. L. Deformation and fracture properties in neutron irradiated pure Mo and Mo alloys. J. Nucl. Mater. 376, 240–246 (2008).

    Article  CAS  Google Scholar 

  10. Trinkle, D. R. & Woodward, C. The chemistry of deformation: How solutes soften pure metals. Science 310, 1665–1667 (2005).

    Article  CAS  Google Scholar 

  11. Medvedeva, N. I., Gornostyrev, Y. N. & Freeman, A. J. Solid solution softening and hardening in the group-V and group-VI bcc transition metals alloys: First principles calculations and atomistic modelling. Phys. Rev. B 76, 212104 (2007).

    Article  Google Scholar 

  12. Brosse, J. B., Fillet, R. & Biscondi, M. Intrinsic intergranular brittleness of molybdenum. Scr. Metall. 15, 619–623 (1981).

    Article  CAS  Google Scholar 

  13. Miller, M. K., Kenik, E. A., Mousa, M. S., Russell, K. F. & Bryhan, A. J. Improvement in the ductility of molybdenum alloys due to grain boundary segregation. Scr. Metall. 46, 299–303 (2002).

    Article  CAS  Google Scholar 

  14. Majumdar, S., Raveendra, S., Samajdar, I., Bhargava, P. & Sharma, I. G. Densification and grain growth during isothermal sintering of Mo and mechanically alloyed Mo-TZM. Acta Mater. 57, 4158–4168 (2009).

    Article  CAS  Google Scholar 

  15. Mueller, A. J., Bianco, R. & Buckman, R. W. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum-rhenium alloys. Inter. J. Ref. Met. Hard Mater. 18, 205–211 (2000).

    Article  CAS  Google Scholar 

  16. Zhang, G. J. et al. Microstructure and strengthening mechanism of oxide lanthanum dispersion strengthened molybdenum alloy. Adv. Eng. Mater. 6, 943–948 (2004).

    Article  CAS  Google Scholar 

  17. Cockeram, B. V. The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum-0.5pct titanium-0.1pct zirconium (TZM), and oxide dispersion strengthened (ODS) molybdenum flat products. Mater. Sci. Eng. A 418, 120–136 (2006).

    Article  Google Scholar 

  18. Bianco, R. & Buckman, R. W. Jr et al. in Molybdenum and Molybdenum Alloys (ed. Crowson, A.) 125–44 (TMS, 1998).

    Google Scholar 

  19. Klopp, W. D. & Witzke, W. R. Mechanical properties of electron-beam-melted molybdenum and dilute Mo–Re alloys. Metall. Trans. 4, 2006–2008 (1973).

    Article  CAS  Google Scholar 

  20. Takida, T. et al. Mechanical properties of fine-grained, sintered molybdenum alloys with dispersed particles developed by mechanical alloying. Mater. Trans. JIM 45, 143–148 (2004).

    Article  CAS  Google Scholar 

  21. Cockeram, B. V. Measuring the fracture toughness of molybdenum-0.5 pct titanium-0.1 pct zirconium and oxide dispersion-strengthened molybdenum alloys using standard and subsized bend specimens. Metall. Mater. Trans. A 33A, 3685–3707 (2002).

    Article  CAS  Google Scholar 

  22. Wang, Y. M., Chen, M. W., Zhou, F. H. & Ma, E. High tensile ductility in a nanostructured metal. Nature 419, 912–915 (2002).

    Article  CAS  Google Scholar 

  23. Zhao, Y. H., Liao, X. Z., Cheng, S., Ma, E. & Zhu, Y. T. Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280–2283 (2006).

    Article  CAS  Google Scholar 

  24. Ma, E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58, 49–53 (2006).

    Article  CAS  Google Scholar 

  25. Kumar, K. S., Van Swygenhoven, H. & Suresh, S. Mechanical behaviour of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003).

    Article  CAS  Google Scholar 

  26. Sabirov, I., Murashkin, M. Yu. & Valiev, R. Z. Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Mater. Sci. Eng. A 560, 1–24 (2013).

    Article  CAS  Google Scholar 

  27. Sha, G., Wang, Y. B., Liao, X. Z., Duan, Z. C., Ringer, S. P. & Langdon, T. G. Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy. Acta Mater. 57, 3123–3132 (2009).

    Article  CAS  Google Scholar 

  28. Wadsworth, J., Packer, C. M., Chewey, P. M. & Coons, W. C. A microstructural investigation of the origin of brittle behaviour in the transverse direction in Mo-based alloy bars. Metall. Trans. 15A, 1741–1752 (1984).

    Article  CAS  Google Scholar 

  29. Gurland, J. & Plateau, J. The mechanism of ductile rupture of metals containing inclusions. Trans. Am. Soc. Metals 56, 442–454 (1963).

    CAS  Google Scholar 

  30. Cockeram, B. V. The role of stress state on the fracture toughness and toughening mechanisms of wrought molybdenum and molybdenum alloys. Mater. Sci. Eng. A528, 288–308 (2010).

    Article  CAS  Google Scholar 

  31. Sun, J., Zhang, G. J., Sun, Y. J., Liu, G., Jiang, F. & Ding, X. D. A Preparing Method of Mo Alloys Doped with Nanosized Rare-earth Oxides Particles, Chinese Patent ZL 200810150463.0 (2010).

  32. Liu, G., Sun, J., Nan, C. W. & Chen, K. H.. Experimental and multiscale modelling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminium alloys. Acta Mater. 53, 3453–3468 (2005).

    Article  Google Scholar 

  33. Liu, G., Zhang, G. J., Wang, R. H., Hu, W., Sun, J. & Chen, K. H. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminium alloys. Acta Mater. 55, 273–284 (2007).

    Article  CAS  Google Scholar 

  34. Pauly, S., Liu, G., Gorantla, S., Wang, G., Kuhn, U., Kim, D. H. & Eckert, J. Criteria for tensile plasticity in Cu–Zr–Al bulk metallic glasses. Acta Mater. 58, 4883–4890 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51171149, 51171142, 50831004), the 973 Program of China (No. 2010CB631003), the 863 Key Project of China (No. 2008AA031000), the National Science Technology Supporting Program of China (No. 2012BAE06B02), and the 111 Project of China (B06025). We thank L. Wang and J. H. Luo, from JinDuiCheng Molybdenum, China, for their assistance in the production and application of the NS-Mo alloys. E.M. was supported in part by an adjunct professorship at XJTU.

Author information

Authors and Affiliations

Authors

Contributions

J.S. designed and supervised the project, G.J.Z., G.L., F.J. and Y.J.S. carried out the experiments, G.L., X.D.D. and J.S. performed the calculations, E.M., G.L. and J.S. wrote the paper. All the co-authors contributed to discussions.

Corresponding authors

Correspondence to J. Sun or E. Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Zhang, G., Jiang, F. et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nature Mater 12, 344–350 (2013). https://doi.org/10.1038/nmat3544

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3544

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing