Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres

Abstract

Flexible skin-attachable strain-gauge sensors are an essential component in the development of artificial systems that can mimic the complex characteristics of the human skin. In general, such sensors contain a number of circuits or complex layered matrix arrays. Here, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. The sensor response is highly repeatable and reproducible up to 10,000 cycles with excellent on/off switching behaviour. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiplex, flexible strain-gauge sensor based on the reversible interlocking of Pt-coated polymer nanofibres.
Figure 2: Electric characterization of the sensor in response to pressure, shear and torsion loads.
Figure 3: Measurement of durability and time-resolved responses.
Figure 4: Measurement of highly sensitive, multiplex and real-time signals.
Figure 5: Fabrication of a sensor network to measure the spatial distribution of an input pressure signal.

Similar content being viewed by others

References

  1. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  2. Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).

    Article  CAS  Google Scholar 

  3. Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotech. 6, 788–792 (2011).

    Article  CAS  Google Scholar 

  4. Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater. 9, 859–864 (2010).

    Article  CAS  Google Scholar 

  5. Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotech. 6, 296–301 (2011).

    Article  CAS  Google Scholar 

  6. McAlpine, M. C., Ahmad, H., Wang, D. W. & Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nature Mater. 6, 379–384 (2007).

    Article  CAS  Google Scholar 

  7. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    Article  CAS  Google Scholar 

  8. Kim, D. H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article  CAS  Google Scholar 

  9. Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004).

    Article  CAS  Google Scholar 

  10. Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

    Article  CAS  Google Scholar 

  11. Lacour, S. P., Jones, J., Wagner, S., Li, T. & Suo, Z. G. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93, 1459–1467 (2005).

    Article  CAS  Google Scholar 

  12. Tian, B. Z. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    Article  CAS  Google Scholar 

  13. Ko, H. et al. Hybrid core–shell nanowire forests as self-selective chemical connectors. Nano Lett. 9, 2054–2058 (2009).

    Article  CAS  Google Scholar 

  14. Cochrane, C., Koncar, V., Lewandowski, M. & Dufour, C. Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors 7, 473–492 (2007).

    Article  CAS  Google Scholar 

  15. Dvir, T. et al. Nanowired three-dimensional cardiac patches. Nature Nanotech. 6, 720–725 (2011).

    Article  CAS  Google Scholar 

  16. Takahashi, T., Takei, K., Gillies, A. G., Fearing, R. S. & Javey, A. Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett. 11, 5408–5413 (2011).

    Article  CAS  Google Scholar 

  17. Xiao, X. et al. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 23, 5440–5444 (2011).

    Article  CAS  Google Scholar 

  18. Kim, D. H. et al. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv. Mater. 21, 3703–3707 (2009).

    Article  CAS  Google Scholar 

  19. Ashmore, J. Cochlear outer hair cell motility. Physiol. Rev. 88, 173–210 (2008).

    Article  CAS  Google Scholar 

  20. Wurbel, M. A., McIntire, M. G., Dwyer, P. & Fiebiger, E. CCL25/CCR9 interactions regulate large intestinal inflammation in a murine model of acute colitis. PLoS ONE 6, e16442 (2011).

    Article  CAS  Google Scholar 

  21. Jang, K. J. & Suh, K. Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10, 36–42 (2010).

    Article  CAS  Google Scholar 

  22. Akhmanova, A. & Yap, A. S. Organizing junctions at the cell–cell interface. Cell 135, 791–793 (2008).

    Article  CAS  Google Scholar 

  23. Kawaguchi, S. & Ng, D. T. W. Sensing ER stress. Science 333, 1830–1831 (2011).

    Article  CAS  Google Scholar 

  24. Pang, C. et al. Bioinspired reversible interlocker using regularly arrayed high aspect-ratio polymer fibers. Adv. Mater. 24, 475–479 (2012).

    Article  CAS  Google Scholar 

  25. Choi, S. J., Kim, H. N., Bae, W. G. & Suh, K. Y. Modulus- and surface energy-tunable ultraviolet-curable polyurethane acrylate: Properties and applications. J. Mater. Chem. 21, 14325–14335 (2011).

    Article  CAS  Google Scholar 

  26. Yoon, H. et al. Adhesion hysteresis of Janus nanopillars fabricated by nanomolding and oblique metal deposition. Nano Today 4, 385–392 (2009).

    Article  CAS  Google Scholar 

  27. Pang, C., Kang, D., Kim, T-i. & Suh, K-Y. Analysis of preload-dependent reversible mechanical interlocking using beetle-inspired wing locking device. Langmuir 28, 2181–2186 (2012).

    Article  CAS  Google Scholar 

  28. Leckband, D. & Israelachvili, J. Intermolecular forces in biology. Q. Rev. Biophys. 34, 105–267 (2001).

    Article  CAS  Google Scholar 

  29. Sekitani, T., Zschieschang, U., Klauk, H. & Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nature Mater. 9, 1015–1022 (2010).

    Article  CAS  Google Scholar 

  30. Lee, Y. et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490–493 (2010).

    Article  CAS  Google Scholar 

  31. Jansen, K. M. B. Effect of pressure on electrical resistance strain gages. Exp. Mech. 37, 245–249 (1997).

    Article  Google Scholar 

  32. Salaita, K. et al. Restriction of receptor movement alters cellular response: Physical force sensing by EphA2. Science 327, 1380–1385 (2010).

    Article  CAS  Google Scholar 

  33. White, C. R. & Frangos, J. A. The shear stress of it all: The cell membrane and mechanochemical transduction. Phil. Trans. R. Soc. B 362, 1459–1467 (2007).

    Article  CAS  Google Scholar 

  34. Krimm, R. F., Davis, B. M., Woodbury, C. J. & Albers, K. M. NT3 expressed in skin causes enhancement of SA1 sensory neurons that leads to postnatal enhancement of Merkel cells. J. Comp. Neurol. 471, 352–360 (2004).

    Article  CAS  Google Scholar 

  35. Dellon, E. S., Mourey, R. & Dellon, A. L. Human pressure perception values for constant and moving one-point and 2-point discrimination. Plast. Reconstr. Surg. 90, 112–117 (1992).

    Article  CAS  Google Scholar 

  36. Hibbeler, R. C. Statics and Mechanics of Materials SI edn (Pearson Prentice Hall, 2004).

    Google Scholar 

  37. Choi, S. J., Suh, K. Y. & Lee, H. H. Direct UV-replica molding of biomimetic hierarchical structure for selective wetting. J. Am. Chem. Soc. 130, 6312–6313 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from National Research Foundation of Korea grants (No. 20110017530 and No. 20110029862), World Class University program (R31-2008-000-10083-0) and Basic Science Research Program (2010-0027955). This work was also supported in part by Korea Research Foundation Grant (KRF-J03003) and the Global Frontier R&D Program on Center for Multiscale Energy System. We thank Y-E. Sung and N. Jung for IV measurement, H-Y. Kim and K. Park for high-speed camera recording, H. Bang for the preparation of figure sets, and S. Kwon and H. Kim for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

C.P., T.K., and K-Y.S. conceived the project. C.P. and K-Y.S. designed the experiments. C.P., G-Y.L. and S.M.K. performed the experiments. C.P., G-Y.L., S.M.K. and S-H.A. developed the electric experimental set-up. C.P., S.M.K., H.N.K., S-H.A. and K-Y.S. analysed the data. C.P. and K-Y.S. wrote the paper, and all authors provided feedback.

Corresponding author

Correspondence to Kahp-Yang Suh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1225 kb)

Supplementary Movie

Supplementary Movie S1 (AVI 2585 kb)

Supplementary Movie

Supplementary Movie S2 (AVI 7605 kb)

Supplementary Movie

Supplementary Movie S3a (AVI 2817 kb)

Supplementary Movie

Supplementary Movie S3b (AVI 865 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, C., Lee, GY., Kim, Ti. et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Mater 11, 795–801 (2012). https://doi.org/10.1038/nmat3380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3380

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing