Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Collective osmotic shock in ordered materials

Abstract

Osmotic shock in a vesicle or cell is the stress build-up and subsequent rupture of the phospholipid membrane that occurs when a relatively high concentration of salt is unable to cross the membrane and instead an inflow of water alleviates the salt concentration gradient. This is a well-known failure mechanism for cells and vesicles (for example, hypotonic shock) and metal alloys (for example, hydrogen embrittlement)1,2,3. We propose the concept of collective osmotic shock, whereby a coordinated explosive fracture resulting from multiplexing the singular effects of osmotic shock at discrete sites within an ordered material results in regular bicontinuous structures. The concept is demonstrated here using self-assembled block copolymer micelles, yet it is applicable to organized heterogeneous materials where a minority component can be selectively degraded and solvated whilst ensconced in a matrix capable of plastic deformation. We discuss the application of these self-supported, perforated multilayer materials in photonics, nanofiltration and optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The microstructure of collective osmotic shock generated perforated multilayers.
Figure 2: The role of ultraviolet dosage and acetic acid on collective osmotic shock.
Figure 3: The application and inorganic transformation of collective osmotic shock materials.

Similar content being viewed by others

References

  1. Gordeev, Y. N. & Entov, V. M. Osmotic mechanism of fracture growth in saturated porous media. Fluid Dyn. 36, 964–970 (2001).

    Article  CAS  Google Scholar 

  2. Olbrich, K., Rawicz, W., Needham, D. & Evans, E. Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys. J. 79, 321–327 (2000).

    Article  CAS  Google Scholar 

  3. Sargent, J. P. & Ashbee, K. H. G. The contribution of osmosis to dimensional instability of adhesive joints. J. Adhes. 17, 83–93 (1984).

    Article  CAS  Google Scholar 

  4. Fozza, A. C., Klemberg-Sapieha, J. E. & Wertheimer, M. R. Vacuum ultraviolet irradiation of polymers. Plasmas Polym. 4, 183–206 (1999).

    Article  CAS  Google Scholar 

  5. Kramer, E. J., Yokoyama, H. & Mates, T. E. Structure of asymmetric diblock copolymers in thin films. Macromolecules 33, 1888–1898 (2000).

    Article  Google Scholar 

  6. Menelle, A., Russell, T. P., Anastasiadis, S. H., Satija, S. K. & Majkrzak, C. F. Ordering of thin diblock copolymer films. Phys. Rev. Lett. 68, 67–70 (1992).

    Article  CAS  Google Scholar 

  7. Stein, G. E., Kramer, E. J., Li, X. F. & Wang, J. Layering transitions in thin films of spherical-domain block copolymers. Macromolecules 40, 2453–2460 (2007).

    Article  CAS  Google Scholar 

  8. Smolders, C. A., Reuvers, A. J., Boom, R. M. & Wienk, I. M. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 73, 259–275 (1992).

    Article  CAS  Google Scholar 

  9. Hillmyer, M. A. Nanoporous materials from block copolymer precursors. Adv. Polym. Sci. 190, 137–181 (2005).

    Article  CAS  Google Scholar 

  10. Lu, Y. F. et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398, 223–226 (1999).

    Article  CAS  Google Scholar 

  11. Melde, B. J., Holland, B. T., Blanford, C. F. & Stein, A. Mesoporous sieves with unified hybrid inorganic/organic frameworks. Chem. Mater. 11, 3302–3308 (1999).

    Article  CAS  Google Scholar 

  12. Hashimoto, T., Tsutsumi, K. & Funaki, Y. Nanoprocessing based on bicontinuous microdomains of block copolymers: Nanochannels coated with metals. Langmuir 13, 6869–6872 (1997).

    Article  CAS  Google Scholar 

  13. Zalusky, A. S., Olayo-Valles, R., Wolf, J. H. & Hillmyer, M. A. Ordered nanoporous polymers from polystyrene-polylactide block copolymers. J. Am. Chem. Soc. 124, 12761–12773 (2002).

    Article  CAS  Google Scholar 

  14. Chan, V. Z. H. et al. Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors. Science 286, 1716–1719 (1999).

    Article  CAS  Google Scholar 

  15. Crossland, E. J. W. et al. A bicontinuous double gyroid hybrid solar cell. Nano Lett. 9, 2807–2812 (2009).

    Article  CAS  Google Scholar 

  16. Wang, Y. & Li, F. B. An emerging pore-making strategy: Confined swelling-induced pore generation in block copolymer materials. Adv. Mater. 23, 2134–2148 (2011).

    Article  CAS  Google Scholar 

  17. Yokoyama, H. & Zhang, R. Fabrication of nanoporous structures in block copolymer using selective solvent assisted with compressed carbon dioxide. Macromolecules 42, 3559–3564 (2009).

    Article  Google Scholar 

  18. Hedrick, J. L. et al. Polyimide nanofoams from aliphatic polyester-based copolymers. Chem. Mater. 10, 39–49 (1998).

    Article  CAS  Google Scholar 

  19. Eshelby, J. D. The force on an elastic singularity. Phil. Trans. R. Soc. A 244, 87–112 (1951).

    Article  Google Scholar 

  20. Thomas, N. L. & Windle, A. H. A theory of case II diffusion. Polymer 23, 529–542 (1982).

    Article  CAS  Google Scholar 

  21. Sharp, J. S. & Bailey, J. Infrared dielectric mirrors based on thin film multilayers of polystyrene and polyvinylpyrrolidone. J. Polym. Sci. Polym. Phys. 49, 732–739 (2011).

    Article  Google Scholar 

  22. Thomas, E. L. et al. Polymer-based photonic crystals. Adv. Mater. 13, 421–425 (2001).

    Article  Google Scholar 

  23. Peinemann, K. V., Abetz, V. & Simon, P. F. W. Asymmetric superstructure formed in a block copolymer via phase separation. Nature Mater. 6, 992–996 (2007).

    Article  CAS  Google Scholar 

  24. Yang, S. Y. et al. Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses. Adv. Mater. 18, 709–712 (2006).

    Article  CAS  Google Scholar 

  25. Phillip, W. A., O’Neill, B., Rodwogin, M., Hillmyer, M. A. & Cussler, E. L. Self-assembled block copolymer thin films as water filtration membranes. ACS Appl. Mater. Interfaces 2, 847–853 (2010).

    Article  CAS  Google Scholar 

  26. Alberius, P. C. A. et al. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater. 14, 3284–3294 (2002).

    Article  CAS  Google Scholar 

  27. Kabra, D., Song, M. H., Wenger, B., Friend, R. H. & Snaith, H. J. High efficiency composite metal oxide-polymer electroluminescent devices: A morphological and material based investigation. Adv. Mater. 20, 3447–3452 (2008).

    Article  CAS  Google Scholar 

  28. Rungsawang, R. et al. Magnetically induced pattern formation in phase separating polymer–solvent–nanoparticle mixtures. Phys. Rev. Lett. 104, 255703 (2010).

    Article  Google Scholar 

  29. Zentel, R. & Fleischhaker, F. Photonic crystals from core–shell colloids with incorporated highly fluorescent quantum dots. Chem. Mater. 17, 1346–1351 (2005).

    Article  Google Scholar 

  30. Turberfield, A. J., Campbell, M., Sharp, D. N., Harrison, M. T. & Denning, R. G. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

    Article  Google Scholar 

  31. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  32. Lozano, G., Colodrero, S., Caulier, O., Calvo, M. E. & Miguez, H. Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells. J. Phys. Chem. C 114, 3681–3687 (2010).

    Article  CAS  Google Scholar 

  33. Perez, M. D. et al. Growth of gold nanoparticle arrays in TiO2 mesoporous matrixes. Langmuir 20, 6879–6886 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge S. Vignolini, C. Wang (beamline 11.0.1.2, LBNL), S. Alvarez, C. Lopez and Q. Song, and the insightful comments of U. Steiner and E. J. Kramer. This work was funded by the Qatar Foundation (QNRF), the Engineering and Physical Sciences Research Council (EPSRC), the Consejo Nacional de Ciencia y Tecnología (CONACyT), the Spanish Ministerio de Ciencia e Innovación (MICINN, Consolider HOPE) and the Government of Andalucía.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in discussions of the research and wrote the manuscript. P.Z-R., K.C., V.N. and E.S. contributed to structural characterization and phenomenology of the COS effects, S.K.N. and S.A.A-M. developed the filtration studies, D.K. and R.H.F. developed the optoelectronic application, H.M. and M.E.C. developed the photonic applications and A.H. provided X-ray characterization of the COS structures.

Corresponding author

Correspondence to Easan Sivaniah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2818 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavala-Rivera, P., Channon, K., Nguyen, V. et al. Collective osmotic shock in ordered materials. Nature Mater 11, 53–57 (2012). https://doi.org/10.1038/nmat3179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing