Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heterogeneity in polymer melts from melting of polymer crystals

An Erratum to this article was published on 01 June 2006

Abstract

Semi-crystalline polymers containing amorphous and crystalline regions usually have intimately mixed chains. The resulting topological constraints (entanglements) in the amorphous regions limit the drawability in the solid state. By controlled synthesis the number of entanglements can be reduced. Ultimately, crystals composed of single chains are feasible, where the chains are fully separated from each other. If such separation can be maintained in the melt a new melt state can be formed. Here we show that through slow and carefully controlled melting such polymer crystals form a heterogeneous melt with more entangled regions, where the chains are mixed, and less entangled ones, composed of individually separated chains. Chain reptation, required for the homogenization of the entanglement distribution, is found to be considerably hindered. The long-lived heterogeneous melt shows decreased melt viscosity and provides enhanced drawability on crystallization. This novel route to create heterogeneous melt should be applicable to polymers in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic view of crystals differing in the distribution of entanglements.
Figure 2: On annealing at 136 C a different melting behaviour is depicted.
Figure 3: NMR line shapes and T2 relaxation curves of fast-heated (10 K min−1, red) and slow-heated (0.2 K min−1, blue) UHMW-PE melts of commercial and metallocene grade recorded at T=423 K.
Figure 4: The role of melting kinetics in the entanglement process of disentangled metallocene grade.
Figure 5: A possible route to transform the heterogeneous melt into a homogeneous melt.
Figure 6: The stress–strain curves of the crystals formed from heterogeneous and homogeneous melts.

Similar content being viewed by others

References

  1. Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).

    Google Scholar 

  2. De Gennes, P. G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979).

    Google Scholar 

  3. Rastogi, S., Goossens, J. G. P., Spoelstra, A. B. & Lemstra, P. J. Chain mobility in polymer systems: on the borderline between solid and melt. 1. Lamellar doubling during annealing of polyethylene. Macromolecules 30, 7880–7889 (1997).

    Article  CAS  Google Scholar 

  4. Rastogi, S. et al. A novel route to fatigue resistant fully sintered UHMW-PE for knee-prosthesis. Biomacromolecules 6, 942–947 (2005).

    Article  CAS  Google Scholar 

  5. Corbeij-Kurelec, L. Chain Mobility in Polymer Systems; On the Borderline between Solid and Melt Thesis, Ch. 7 Eindhoven Univ. of Technology (2001).

  6. Rastogi, S. & Kurelec, L. Polymorphism in polymers; its implications for polymer crystallisation. J. Mater. Sci. 35, 5121–5138 (2000).

    Article  CAS  Google Scholar 

  7. De Gennes, P. G. Explosion à la fusion. C. R. Acad. Sci. Paris II 321, 363–365 (1995).

    CAS  Google Scholar 

  8. Barham, P. & Sadler, D. M. A neutron scattering study of the melting behaviour of polyethylene single crystals. Polymer 32, 393–395 (1991).

    Article  CAS  Google Scholar 

  9. Tracht, U. et al. Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett. 81, 2727–2730 (1998).

    Article  CAS  Google Scholar 

  10. Graf, R., Heuer, A. & Spiess, H. W. Chain-order effects in polymer melts probed by 1H double-quantum NMR spectroscopy. Phys. Rev. Lett. 80, 5738–5741 (1998).

    Article  CAS  Google Scholar 

  11. Schmidt-Rohr, K. & Spiess, H. W. Multidimensional Solid-State NMR and Polymers (Academic, New York, 1994).

    Google Scholar 

  12. Likhtman, A. E. & McLeish, T. C. B. Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35, 6332–6343 (2002).

    Article  CAS  Google Scholar 

  13. Graham, R. S., Likhtman, A. E., McLeish, T. C. B. & Milner, S. T. Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release. J. Rheol. 47, 1171–1200 (2003).

    Article  CAS  Google Scholar 

  14. Mc Leish, T. C. B. & Milner, S. T. Entangled dynamics and melt flow of branched polymers. Adv. Polym. Sci. 143, 195–231 (1999).

    Article  CAS  Google Scholar 

  15. Wischnewski, A., Monkenbuch, M., Willner, L., Richter, D. & Kali, G. Direct observation of the transition from free to constrained single-segment motion in entangled polymer melts. Phys. Rev. Lett. 90, 583021–583024 (2003).

    Article  Google Scholar 

  16. Bates, F. S., Wignall, G. D. & Koehler, W. C. Critical behaviour of binary liquid mixtures of deuterated and protonated polymers. Phys. Rev. Lett. 55, 2425–2428 (1985).

    Article  CAS  Google Scholar 

  17. Ferry, J. D. Viscoelastic Properties of Polymers 3rd edn (Wiley, New York, 1980).

    Google Scholar 

  18. Raju, V. R., Manezes, E. V., Marin, G., Graessley, W. W. & Fetters, L. J. Concentration and molecular weight dependence of viscoelastic properties in linear and star polymers. Macromolecules 14, 1668–1676 (1981).

    Article  CAS  Google Scholar 

  19. Carella, J. M., Graessley, W. W. & Fetters, L. J. Effects of chain microstructure on the viscoelastic properties of linear polymer melts: polybutadienes and hydrogenated polybutadienes. Macromolecules 17, 2775–2786 (1984).

    Article  CAS  Google Scholar 

  20. Wood-Adams, P. M., Dealy, J. M., de Groot, A. W. & Redwine, O. D. Effect of molecular structure on the linear viscoelastic behaviour of polyethylene. Macromolecules 33, 7489–7499 (2000).

    Article  CAS  Google Scholar 

  21. Lohse, D. J. et al. Well-defined, model long chain branched polyethylene. 2. Melt rheological behaviour. Macromolecules 35, 3066–3075 (2002).

    Article  CAS  Google Scholar 

  22. Vega, J. F., Rastogi, S., Peters, G. W. M. & Meijer, H. E. H. Rheology and reptation of linear polymers: Ultra high molecular weight chain dynamics in the melt. J. Rheol. 48, 663–678 (2004).

    Article  CAS  Google Scholar 

  23. Rotzinger, B. P., Chanzy, H. D. & Smith, P. High strength/high modulus polyethylene: synthesis and processing of ultra-high molecular weight virgin powders. Polymer 30, 1814–1819 (1989).

    Article  CAS  Google Scholar 

  24. Smith, P. & Lemstra, P. J. Ultra-high-strength polyethylene filaments by solution spinning/drawing. J. Mater. Sci. 15, 505–514 (1980).

    Article  CAS  Google Scholar 

  25. Lemstra, P. J., Bastiaansen, C. W. M. & Rastogi, S. in Structure Formation in Polymeric Fibers (ed. Salem, D. R.) Ch. 5 (Hanser, Munich, 2000).

    Google Scholar 

  26. Bastiaansen, C. W. M., Meijer, H. E. H. & Lemstra, P. J. Memory effects in polyethylenes: influence of processing and crystallization history. Polymer 31, 1435–1440 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank H. E. H. Meijer, C. Bailly, J. F. Vega, R. Duchateau and P. Magusin for constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Rastogi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary annexures I - IV and supplementary figures (PDF 309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastogi, S., Lippits, D., Peters, G. et al. Heterogeneity in polymer melts from melting of polymer crystals. Nature Mater 4, 635–641 (2005). https://doi.org/10.1038/nmat1437

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1437

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing