Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Invariant natural killer T cells recognize a fungal glycosphingolipid that can induce airway hyperreactivity

This article has been updated

Abstract

Aspergillus fumigatus is a saprophytic fungus that is ubiquitous in the environment and is commonly associated with allergic sensitization and severe asthma in humans. Although A. fumigatus is recognized by multiple microbial pattern-recognition receptors, we found that an A. fumigatus–derived glycosphingolipid, asperamide B, directly activates invariant natural killer T (iNKT) cells in vitro in a CD1d-restricted, MyD88-independent and dectin-1–independent fashion. Moreover, asperamide B, when loaded onto CD1d, directly stained, and was sufficient to activate, human and mouse iNKT cells. In vivo, asperamide B rapidly induced airway hyperreactivity, which is a cardinal feature of asthma, by activating pulmonary iNKT cells in an interleukin-33 (IL-33)-ST2–dependent fashion. Asperamide B is thus the first fungal glycolipid found to directly activate iNKT cells. These results extend the range of microorganisms that can be directly detected by iNKT cells to the kingdom of fungi and may explain how A. fumigatus can induce severe chronic respiratory diseases in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An A. fumigatus extract rapidly induces AHR independently of adaptive immunity.
Figure 2: AHR induced by the A. fumigatus extract is dependent on iNKT cells.
Figure 3: AHR induced with A. fumigatus extract is dependent on MyD88 but not Ticam1.
Figure 4: Purified and synthetic asperamide B activate mouse and human iNKT cells.
Figure 5: Asperamide B–loaded CD1d stains and directly activates iNKT cells.
Figure 6: Asperamide B–induced AHR requires MyD88 and ST2.

Similar content being viewed by others

Change history

  • 27 September 2013

     In the version of this article initially published online, the molecular mass of asperamide B was incorrectly given as 738, when it is actually 754. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Trompette, A. et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457, 585–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Barrett, N.A. et al. Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. J. Exp. Med. 208, 593–604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O'Connor, G.T. et al. Airborne fungi in the homes of children with asthma in low-income urban communities: The Inner-City Asthma Study. J. Allergy Clin. Immunol. 114, 599–606 (2004).

    Article  PubMed  Google Scholar 

  4. Shelton, B.G., Kirkland, K.H., Flanders, W.D. & Morris, G.K. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl. Environ. Microbiol. 68, 1743–1753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steele, C. et al. The β-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog. 1, e42 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Balloy, V. & Chignard, M. The innate immune response to Aspergillus fumigatus. Microbes Infect. 11, 919–927 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Fairs, A. et al. IgE sensitization to Aspergillus fumigatus is associated with reduced lung function in asthma. Am. J. Respir. Crit. Care Med. 182, 1362–1368 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Menzies, D., Holmes, L., McCumesky, G., Prys-Picard, C. & Niven, R. Aspergillus sensitization is associated with airflow limitation and bronchiectasis in severe asthma. Allergy 66, 679–685 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Agarwal, R. Severe asthma with fungal sensitization. Curr. Allergy Asthma Rep. 11, 403–413 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Greenberger, P.A. Allergic bronchopulmonary aspergillosis. J. Allergy Clin. Immunol. 110, 685–692 (2002).

    Article  PubMed  Google Scholar 

  11. Matangkasombut, P., Pichavant, M., Dekruyff, R.H. & Umetsu, D.T. Natural killer T cells and the regulation of asthma. Mucosal Immunol. 2, 383–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Iwamura, C. & Nakayama, T. Role of NKT cells in allergic asthma. Curr. Opin. Immunol. 22, 807–813 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Kurup, V.P., Mauze, S., Choi, H., Seymour, B.W.P. & Coffman, R.L. A murine model of allergic bronchopulmonary aspergillosis with elevated eosinophils and IgE. J. Immunol. 148, 3783–3788 (1992).

    CAS  PubMed  Google Scholar 

  14. Grünig, G. et al. Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J. Exp. Med. 185, 1089–1099 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kurup, V.P. & Grunig, G. Animal models of allergic bronchopulmonary aspergillosis. Mycopathologia 153, 165–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Yoshitomi, H. et al. A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–960 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y. et al. New sphingolipids with a previously unreported 9-methyl-C20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 42, 759–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Cohen, N.R. et al. Innate recognition of cell wall β-glucans drives invariant natural killer T cell responses against fungi. Cell Host Microbe 10, 437–450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Chang, Y.J. et al. Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. J. Clin. Invest. 121, 57–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Kinjo, Y. et al. Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat. Immunol. 12, 966–974 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Godfrey, D.I. et al. Antigen recognition by CD1d-restricted NKT T cell receptors. Semin. Immunol. 22, 61–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Brigl, M. et al. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med. 208, 1163–1177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawakami, K. et al. Monocyte chemoattractant protein-1–dependent increase of Vα14 NKT cells in lungs and their roles in Th1 response and host defense in cryptococcal infection. J. Immunol. 167, 6525–6532 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Blackstock, R. & Murphy, J.W. Age-related resistance of C57BL/6 mice to Cryptococcus neoformans is dependent on maturation of NKT cells. Infect. Immun. 72, 5175–5180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sherif, R. & Segal, B.H. Pulmonary aspergillosis: clinical presentation, diagnostic tests, management and complications. Curr. Opin. Pulm. Med. 16, 242–250 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. Ramaprakash, H. et al. Targeting ST2L potentiates CpG-mediated therapeutic effects in a chronic fungal asthma model. Am. J. Pathol. 179, 104–115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lilly, L.M. et al. The β-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. J. Immunol. 189, 3653–3660 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murdock, B.J. et al. Interleukin-17 drives pulmonary eosinophilia following repeated exposure to Aspergillus fumigatus conidia. Infect. Immun. 80, 1424–1436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, H.Y. et al. Innate lymphoid cells responding to IL-33 mediate airway-hyperreactivity independent of adaptive immunity. J. Allergy Clin. Immunol. 129, 216–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Arshad, M.I. et al. NKT cells are required to induce high IL-33 expression in hepatocytes during ConA-induced acute hepatitis. Eur. J. Immunol. 41, 2341–2348 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Smithgall, M.D. et al. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int. Immunol. 20, 1019–1030 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Saenz, S.A. et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature 464, 1362–1366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Chang, Y.-J. et al. Innate lymphoid cells mediate influenza-induced airway hyperreactivity independent of adaptive immunity. Nat. Immunol. 12, 631–638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Price, A.E. et al. Systemically dispersed innate IL-13–expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA 107, 11489–11494 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Halim, T.Y., Krauss, R.H., Sun, A.C. & Takei, F. Lung natural helper cells are a critical source of Th2 cell–type cytokines in protease allergen-induced airway inflammation. Immunity 36, 451–463 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Chan-Yeung, M. et al. Geographical variations in the prevalence of atopic sensitization in six study sites across Canada. Allergy 65, 1404–1413 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Broadfield, E. et al. Increase in the prevalence of allergen skin sensitization in successive birth cohorts. J. Allergy Clin. Immunol. 109, 969–974 (2002).

    Article  PubMed  Google Scholar 

  44. O'Driscoll, B.R. et al. Comparison of skin prick tests with specific serum immunoglobulin E in the diagnosis of fungal sensitization in patients with severe asthma. Clin. Exp. Allergy 39, 1677–1683 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Meyer, E.H. et al. Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proc. Natl. Acad. Sci. USA 103, 2782–2787 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Agea, E. et al. Human CD1-restricted T cell recognition of lipids from pollens. J. Exp. Med. 202, 295–308 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wingender, G. et al. Invariant NKT cells are required for airway inflammation induced by environmental antigens. J. Exp. Med. 208, 1151–1162 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brennan, P.J. et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat. Immunol. 12, 1202–1211 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jyonouchi, S. et al. Invariant natural killer T cells from children with versus without food allergy exhibit differential responsiveness to milk-derived sphingomyelin. J. Allergy Clin. Immunol. 128, 102–109 e13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, Y.J. et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J. Allergy Clin. Immunol. 127, 372–381.e1–3 (2011).

    Article  PubMed  Google Scholar 

  51. Scanlon, S.T. et al. Airborne lipid antigens mobilize resident intravascular NKT cells to induce allergic airway inflammation. J. Exp. Med. 208, 2113–2124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karp, C.L. Guilt by intimate association: what makes an allergen an allergen? J. Allergy Clin. Immunol. 125, 955–960 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Thomas, W.R., Hales, B.J. & Smith, W.A. Structural biology of allergens. Curr. Allergy Asthma Rep. 5, 388–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Martin, T.R., Gerard, N.P., Galli, S.J. & Drazen, J.M. Pulmonary responses to bronchoconstrictor agonists in the mouse. J. Appl. Physiol. 64, 2318–2323 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Y. et al. A modified α-galactosyl ceramide for staining and stimulating natural killer T cells. J. Immunol. Methods 312, 34–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, H.-H. et al. Apoptotic cells activate NKT cells through T cell Ig-like mucin-like-1 resulting in airway hyperreactivity. J. Immunol. 185, 5225–5235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health (NIH) grants RO1AI026322, RC1HL099839 and R21AI083523 to D.T.U. and by the Bunning Food Allergy Project to D.T.U. L.A.A. was a graduate student in the Program in Immunology, Division of Medical Sciences, Harvard University. We would also like to acknowledge the NIH National Institute of Allergy and Infectious Diseases (NIAID) research reagent program that provided the A. fumigatus lysates used in this study. We thank the NIH NIAID Tetramer Facility for providing CD1d monomers and tetramers for this study, D.B. Moody for help with plate-bound CD1d assays and M. Grusby (Harvard School of Public Health), M. Taniguchi and T. Nakayama (Chiba University), S. Akira (Osaka University), R. Geha (Boston Children's Hospital) and A. McKenzie (Medical Research Council, Laboratory of Molecular Biology) for providing genetically modified mice.

Author information

Authors and Affiliations

Authors

Contributions

L.A.A. conceived and initiated the project, planned and performed experiments and wrote the manuscript. V.C. performed lipid isolation, identification and synthesis. Y.-J.C. planned and performed experiments, including the tetramer studies. H.Y.K. performed experiments and edited the manuscript. Y.-T.C. isolated and maintained iNKT cell lines. M.P. maintained iNKT cell lines, assisted with experiments and provided training in invasive plethysmography. R.H.D. helped plan experiments and edited the manuscript. P.B.S. planned lipid isolation, identification and synthesis and wrote the manuscript. D.T.U. conceived the idea for the project, planned experiments, shepherded the project along and wrote the manuscript.

Corresponding author

Correspondence to Dale T Umetsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1517 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albacker, L., Chaudhary, V., Chang, YJ. et al. Invariant natural killer T cells recognize a fungal glycosphingolipid that can induce airway hyperreactivity. Nat Med 19, 1297–1304 (2013). https://doi.org/10.1038/nm.3321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing