Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model

Abstract

Hemophilia A is a bleeding disorder resulting from coagulation factor VIII (FVIII) deficiency. Exogenously provided FVIII effectively reduces bleeding complications in patients with severe hemophilia A. In approximately 30% of such patients, however, the 'foreignness' of the FVIII molecule causes them to develop inhibitory antibodies against FVIII (inhibitors), precluding FVIII treatment in this set of patients1,2,3. Moreover, the poor pharmacokinetics of FVIII, attributed to low subcutaneous bioavailability and a short half-life of 0.5 d, necessitates frequent intravenous injections3,4,5. To overcome these drawbacks, we generated a humanized bispecific antibody to factor IXa (FIXa) and factor X (FX), termed hBS23, that places these two factors into spatially appropriate positions and mimics the cofactor function of FVIII. hBS23 exerted coagulation activity in FVIII-deficient plasma, even in the presence of inhibitors, and showed in vivo hemostatic activity in a nonhuman primate model of acquired hemophilia A. Notably, hBS23 had high subcutaneous bioavailability and a 2-week half-life and would not be expected to elicit the development of FVIII-specific inhibitory antibodies, as its molecular structure, and hence antigenicity, differs from that of FVIII. A long-acting, subcutaneously injectable agent that is unaffected by the presence of inhibitors could markedly reduce the burden of care for the treatment of hemophilia A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrations of the action of FVIIIa or of a bispecific antibody as a cofactor promoting the interaction between FIXa and FX.
Figure 2: In vitro FVIII-mimetic cofactor activity of hBS23.
Figure 3: In vivo hemostatic activity and time profiles of plasma concentrations of hBS23.

Similar content being viewed by others

References

  1. Fischer, K., Lewandowski, D., Marijke van den Berg, H. & Janssen, M.P. Validity of assessing inhibitor development in haemophilia PUPs using registry data: the EUHASS project. Haemophilia 18, e241–e246 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Oldenburg, J., El-Maarri, O. & Schwaab, R. Inhibitor development in correlation to factor VIII genotypes. Haemophilia 8 (suppl. 2), 23–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Berntorp, E. & Shapiro, A.D. Modern haemophilia care. Lancet 379, 1447–1456 (2012).

    Article  PubMed  Google Scholar 

  4. Shi, Q., Kuether, E.L., Schroeder, J.A., Fahs, S.A. & Montgomery, R.R. Intravascular recovery of VWF and FVIII following intraperitoneal injection and differences from intravenous and subcutaneous injection in mice. Haemophilia 18, 639–646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Björkman, S. et al. Population pharmacokinetics of recombinant factor VIII: the relationships of pharmacokinetics to age and body weight. Blood 119, 612–618 (2012).

    Article  PubMed  Google Scholar 

  6. Stonebraker, J.S., Bolton-Maggs, P.H., Soucie, J.M., Walker, I. & Brooker, M. A study of variations in the reported haemophilia A prevalence around the world. Haemophilia 16, 20–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Geraghty, S. et al. Practice patterns in haemophilia A therapy—global progress towards optimal care. Haemophilia 12, 75–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Manco-Johnson, M.J. et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N. Engl. J. Med. 357, 535–544 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Young, G. et al. When should prophylaxis therapy in inhibitor patients be considered? Haemophilia 17, e849–e857 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Astermark, J. et al. A randomized comparison of bypassing agents in hemophilia complicated by an inhibitor: the FEIBA NovoSeven Comparative (FENOC) Study. Blood 109, 546–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Leissinger, C. et al. Anti-inhibitor coagulant complex prophylaxis in hemophilia with inhibitors. N. Engl. J. Med. 365, 1684–1692 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Hay, C.R. & DiMichele, D.M. The principal results of the International Immune Tolerance Study: a randomized dose comparison. Blood 119, 1335–1344 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Ragni, M.V. et al. Survey of current prophylaxis practices and bleeding characteristics of children with severe haemophilia A in US haemophilia treatment centres. Haemophilia 18, 63–68 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Fay, P.J. Activation of factor VIII and mechanisms of cofactor action. Blood Rev. 18, 1–15 (2004).

    Article  PubMed  Google Scholar 

  15. Lenting, P.J., Donath, M.J., van Mourik, J.A. & Mertens, K. Identification of a binding site for blood coagulation factor IXa on the light chain of human factor VIII. J. Biol. Chem. 269, 7150–7155 (1994).

    CAS  PubMed  Google Scholar 

  16. Fay, P.J. & Koshibu, K. The A2 subunit of factor VIIIa modulates the active site of factor IXa. J. Biol. Chem. 273, 19049–19054 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Lapan, K.A. & Fay, P.J. Localization of a factor X interactive site in the A1 subunit of factor VIIIa. J. Biol. Chem. 272, 2082–2088 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Z. et al. A potent erythropoietin-mimicking human antibody interacts through a novel binding site. Blood 110, 2408–2413 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Mayorov, A.V. et al. Catalytic antibody degradation of ghrelin increases whole-body metabolic rate and reduces refeeding in fasting mice. Proc. Natl. Acad. Sci. USA 105, 17487–17492 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Bhaskar, V. et al. A fully human, allosteric monoclonal antibody that activates the insulin receptor and improves glycemic control. Diabetes 61, 1263–1271 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beck, A., Wurch, T., Bailly, C. & Corvaia, N. Strategies and challenges for the next generation of therapeutic antibodies. Nat. Rev. Immunol. 10, 345–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Baeuerle, P.A., Kufer, P. & Bargou, R. BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr. Opin. Mol. Ther. 11, 22–30 (2009).

    CAS  PubMed  Google Scholar 

  23. Jackman, J. et al. Development of a two-part strategy to identify a therapeutic human bispecific antibody that inhibits IgE receptor signaling. J. Biol. Chem. 285, 20850–20859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen, B.W. et al. The tertiary structure and domain organization of coagulation factor VIII. Blood 111, 1240–1247 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saphire, E.O. et al. Contrasting IgG structures reveal extreme asymmetry and flexibility. J. Mol. Biol. 319, 9–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Baker, M.P., Reynolds, H.M., Lumicisi, B. & Bryson, C.J. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1, 314–322 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, W., Wang, E.Q. & Balthasar, J.P. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 84, 548–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Martens, T. et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res. 12, 6144–6152 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Shima, M., Matsumoto, T. & Ogiwara, K. New assays for monitoring haemophilia treatment. Haemophilia 14 (suppl. 3), 83–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Shetty, S., Bhave, M. & Ghosh, K. Acquired hemophilia A: diagnosis, aetiology, clinical spectrum and treatment options. Autoimmun. Rev. 10, 311–316 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, Y.S. et al. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J. Pharmacol. Exp. Ther. 288, 371–378 (1999).

    CAS  PubMed  Google Scholar 

  32. Benincosa, L.J. et al. Pharmacokinetics and pharmacodynamics of a humanized monoclonal antibody to factor IX in cynomolgus monkeys. J. Pharmacol. Exp. Ther. 292, 810–816 (2000).

    CAS  PubMed  Google Scholar 

  33. Deng, R. et al. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: what have we learned? MAbs 3, 61–66 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lillicrap, D. Improvements in factor concentrates. Curr. Opin. Hematol. 17, 393–397 (2010).

    Article  PubMed  Google Scholar 

  35. Powell, J.S. et al. Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients. Blood 119, 3031–3037 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. High, K.A. Gene therapy for haemophilia: a long and winding road. J. Thromb. Haemost. 9 (suppl. 1), 2–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Harding, F.A., Stickler, M.M., Razo, J. & DuBridge, R.B. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2, 256–265 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Merchant, A.M. et al. An efficient route to human bispecific IgG. Nat. Biotechnol. 16, 677–681 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Igawa, T. et al. Engineering the variable region of therapeutic IgG antibodies. MAbs 3, 243–252 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Igawa, T. et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng. Des. Sel. 23, 385–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Bloom, J.W., Madanat, M.S., Marriott, D., Wong, T. & Chan, S.Y. Intrachain disulfide bond in the core hinge region of human IgG4. Protein Sci. 6, 407–415 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Okuda, M. & Yamamoto, Y. Usefulness of synthetic phospholipid in measurement of activated partial thromboplastin time: a new preparation procedure to reduce batch difference. Clin. Lab. Haematol. 26, 215–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  Google Scholar 

  44. Healey, J.F., Lubin, I.M. & Lollar, P. The cDNA and derived amino acid sequence of porcine factor VIII. Blood 88, 4209–4214 (1996).

    CAS  PubMed  Google Scholar 

  45. Yonemura, H. et al. Efficient production of recombinant human factor VIII by co-expression of the heavy and light chains. Protein Eng. 6, 669–674 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Hemker, H.C. et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol. Haemost. Thromb. 33, 4–15 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Matsuura, T. Houjo, K. Kanisawa, R. Takemoto, T. Koike and M. Hiranuma for carrying out the in vivo experiments and M. Fujii, Y. Nakata, H. Ishida and F. Isomura for antibody generation and preparation. We also thank S. Ohtsu for carrying out in vitro experiments.

Author information

Authors and Affiliations

Authors

Contributions

T. Kitazawa and T. Igawa led the pharmacological studies and the optimization of the bispecific antibody, respectively, in the program and wrote the manuscript. Z.S. designed the lead chimeric bispecific antibody and hBS23. T. Kojima led the lead identification. H.T. provided ideas on bispecific antibody engineering. T. Suzuki, H.A., T.M., S.I., M.K.-S. and T. Iida generated FVIII-, FIXa- and FX-specific antibodies. T. Soeda, Y.O.-N., A.H., M.F., C.M., E.T., T. Toyoda and A.U. performed the in vitro experiments. K.E. and S.S. performed the affinity analyses. Y. Kikuchi, T.W., M.W. and M.G. purified the bispecific antibody and the coagulation factor. A.M. and K.Y. performed the in vivo pharmacological study. K. Haraya and T. Tachibana performed the pharmacokinetic study. H.S. and Y. Kawabe provided direction and guidance for the various functional areas. M.S. and A.Y. provided advice on the program from the viewpoints of their medical expertise in hemophilia. K. Hattori provided the hypothesis and directed and organized the program.

Corresponding author

Correspondence to Takehisa Kitazawa.

Ethics declarations

Competing interests

Declaration: T. Kitazawa, T. Igawa, Z.S., A.M., T. Kojima., T. Soeda, K.Y., Y.O.-N., H.S., T. Suzuki, T.M., C.M. and K. Hattori are employees of Chugai Pharmaceutical and inventors on the patents, patent applications or both relating to the bispecific antibodies to FIXa and FX, of which all rights have been assigned to the company. H.T., H.A., S.I., M.K.-S., T. Iida, A.H., K.E., M.F., E.T., Y. Kikuchi, T.W., M.W., M.G., T. Toyoda, A.U., S.S., K. Haraya, T. Tachibana and Y. Kawabe are employees of Chugai Pharmaceutical. M.S. receives consulting honoraria and research support from Chugai Pharmaceutical. A.Y. previously received research support from Chugai Pharmaceutical.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitazawa, T., Igawa, T., Sampei, Z. et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat Med 18, 1570–1574 (2012). https://doi.org/10.1038/nm.2942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing