Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma

Abstract

Immune tolerance is instituted early in life, during which time regulatory T (Treg) cells have an important role. Recurrent infections with respiratory syncytial virus (RSV) in early life increase the risk for asthma in adult life. Repeated infection of infant mice tolerized to ovalbumin (OVA) through their mother's milk with RSV induced allergic airway disease in response to OVA sensitization and challenge, including airway inflammation, hyper-reactivity and higher OVA-specific IgE, as compared to uninfected tolerized control mice. Virus infection induced GATA-3 expression and T helper type 2 (TH2) cytokine production in forkhead box P3 (FOXP3)+ Treg cells and compromised the suppressive function of pulmonary Treg cells in a manner that was dependent on interleukin-4 receptor α (IL-4Rα) expression in the host. Thus, by promoting a TH2-type inflammatory response in the lung, RSV induced a TH2-like effector phenotype in Treg cells and attenuated tolerance to an unrelated antigen (allergen). Our findings highlight a mechanism by which viral infection targets a host-protective mechanism in early life and increases susceptibility to allergic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recurrent RSV infection compromises maternally transferred tolerance to inhaled allergen.
Figure 2: RSV infection triggers inflammation in lung-draining lymph nodes.
Figure 3: RSV infection alters the phenotype and function of Treg cells in the lung.
Figure 4: Treg cells acquire a TH2-like effector phenotype in tolerized RSV-infected mice.
Figure 5: Host IL-4Rα signaling is important to breach tolerance.

Similar content being viewed by others

References

  1. Levy, O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat. Rev. Immunol. 7, 379–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Noble, V. et al. Respiratory status and allergy nine to 10 years after acute bronchiolitis. Arch. Dis. Child. 76, 315–319 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sigurs, N., Bjarnason, R., Sigurbergsson, F. & Kjellman, B. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care Med. 161, 1501–1507 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Sigurs, N. et al. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am. J. Respir. Crit. Care Med. 171, 137–141 (2005).

    Article  PubMed  Google Scholar 

  5. Wu, P. et al. Evidence of a causal role of winter virus infection during infancy in early childhood asthma. Am. J. Respir. Crit. Care Med. 178, 1123–1129 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sly, P.D., Kusel, M. & Holt, P.G. Do early-life viral infections cause asthma? J. Allergy Clin. Immunol. 125, 1202–1205 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Pullan, C.R. & Hey, E.N. Wheezing, asthma, and pulmonary dysfunction 10 years after infection with respiratory syncytial virus in infancy. Br. Med. J. (Clin. Res. Ed.) 284, 1665–1669 (1982).

    Article  CAS  Google Scholar 

  8. Bacharier, L.B. et al. Determinants of asthma after severe respiratory syncytial virus bronchiolitis. J. Allergy Clin. Immunol. 91–100 (2012).

  9. Culley, F.J., Pollott, J. & Openshaw, P.J. Age at first viral infection determines the pattern of T cell–mediated disease during reinfection in adulthood. J. Exp. Med. 196, 1381–1386 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mold, J.E. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322, 1562–1565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mold, J.E. et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330, 1695–1699 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Verhasselt, V. et al. Breast milk–mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat. Med. 14, 170–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Polte, T. & Hansen, G. Maternal tolerance achieved during pregnancy is transferred to the offspring via breast milk and persistently protects the offspring from allergic asthma. Clin. Exp. Allergy 38, 1950–1958 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Singleton, R., Etchart, N., Hou, S. & Hyland, L. Inability to evoke a long-lasting protective immune response to respiratory syncytial virus infection in mice correlates with ineffective nasal antibody responses. J. Virol. 77, 11303–11311 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Falsey, A.R., Hennessey, P.A., Formica, M.A., Cox, C. & Walsh, E.E. Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med. 352, 1749–1759 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, T.R. et al. Priming with secreted glycoprotein G of respiratory syncytial virus (RSV) augments interleukin-5 production and tissue eosinophilia after RSV challenge. J. Virol. 72, 2871–2880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tebbey, P.W., Hagen, M. & Hancock, G.E. Atypical pulmonary eosinophilia is mediated by a specific amino acid sequence of the attachment (G) protein of respiratory syncytial virus. J. Exp. Med. 188, 1967–1972 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lukacs, N.W. et al. Differential immune responses and pulmonary pathophysiology are induced by two different strains of respiratory syncytial virus. Am. J. Pathol. 169, 977–986 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Curotto de Lafaille, M.A. et al. Adaptive Foxp3+ regulatory T cell–dependent and –independent control of allergic inflammation. Immunity 29, 114–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Ostroukhova, M. et al. Treg-mediated immunosuppression involves activation of the Notch-HESI axis by membrane-bound TGF-β. J. Clin. Invest. 116, 996–1004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ostroukhova, T.Y., Kulikov, A.V., Rozenkrants, A.A. & Smirnova, O.V. Overexpression of prolactin receptors during intrahepatic transplantation of RS1 rat cholangiocellular carcinoma cells. Bull. Exp. Biol. Med. 141, 364–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, D.H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor GATA-3 is differentially expressed in murine TH1 and TH2 cells and controls TH2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Bhattacharya, D. et al. Transcriptional profiling of antigen-dependent murine B cell differentiation and memory formation. J. Immunol. 179, 6808–6819 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J. Exp. Med. 203, 1701–1711 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Benson, M.J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R.J. All-trans retinoic acid mediates enhanced Treg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204, 1765–1774 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takaki, H. et al. STAT6 inhibits TGF-β1–mediated Foxp3 induction through direct binding to the Foxp3 promoter, which is reverted by retinoic acid receptor. J. Biol. Chem. 283, 14955–14962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewkowich, I.P. et al. CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. J. Exp. Med. 202, 1549–1561 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dominguez-Villar, M., Baecher-Allan, C.M. & Hafler, D.A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Forsthuber, T., Yip, H.C. & Lehmann, P.V. Induction of TH1 and TH2 immunity in neonatal mice. Science 271, 1728–1730 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Openshaw, P.J. Immunity and immunopathology to respiratory syncytial virus. The mouse model. Am. J. Respir. Crit. Care Med. 152, S59–S62 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Graham, B.S., Johnson, T.R. & Peebles, R.S. Immune-mediated disease pathogenesis in respiratory syncytial virus infection. Immunopharmacology 48, 237–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Moore, M.L. et al. STAT1 negatively regulates lung basophil IL-4 expression induced by respiratory syncytial virus infection. J. Immunol. 183, 2016–2026 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Shirey, K.A. et al. Control of RSV-induced lung injury by alternatively activated macrophages is IL-4R α-, TLR4-, and IFN-β–dependent. Mucosal Immunol. 3, 291–300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yung, R.L. & Julius, A. Epigenetics, aging, and autoimmunity. Autoimmunity 41, 329–335 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wenzel, S., Wilbraham, D., Fuller, R., Getz, E.B. & Longphre, M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370, 1422–1431 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, Y., Su, M.A. & Wan, Y.Y. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35, 337–348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wohlfert, E.A. et al. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J. Clin. Invest. 121, 4503–4515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ray, A. & Cohn, L. TH2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation. J. Clin. Invest. 104, 985–993 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mantel, P.Y. et al. GATA3-driven TH2 responses inhibit TGF-β1–induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol. 5, e329 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Moore, M.L. et al. Cutting edge: oseltamivir decreases T cell GM1 expression and inhibits clearance of respiratory syncytial virus: potential role of endogenous sialidase in antiviral immunity. J. Immunol. 178, 2651–2654 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Domachowske, J.B. & Bonville, C.A. Overnight titration of human respiratory syncytial virus using quantitative shell vial amplification. Biotechniques 25, 644–647 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. McMenamin, C., Pimm, C., McKersey, M. & Holt, P.G. Regulation of IgE responses to inhaled antigen in mice by antigen- specific γδ T cells. Science 265, 1869–1871 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Krishnamoorthy, N. et al. Activation of the c-kit–PI3 kinase axis induces the regulatory cytokine interleukin-6 in dendritic cells impacting allergic immune responses in the lung. Nat. Med. 14, 565–573 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oriss, T.B. et al. Dynamics of dendritic cell phenotype and interactions with CD4+ T cells in airway inflammation and tolerance. J. Immunol. 174, 854–863 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, H. et al. Indoleamine 2,3-dioxygenase in lung dendritic cells promotes TH2 responses and allergic inflammation. Proc. Natl. Acad. Sci. USA 105, 6690–6695 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Shevach and G. Chattopadhyay (Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health (NIH)) for providing spleens of OT-II × FOXP3-eGFP knock-in mice and J. Zhu (Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH) for his efforts in identifying the source of these mice. DO11.10 transgenic mice were originally provided by K. Murphy (Washington University, St. Louis). This work was supported by NIH grants HL060207 and AI093116 (to P.R.), HL 077430 and AI048927 (to A.R.) and U19 AI095227 (to R.S.P.).

Author information

Authors and Affiliations

Authors

Contributions

N.K. designed and performed experiments, analyzed data and wrote the manuscript. A.K. and T.B.O. performed cell sorting and analyzed flow cytometry data. M.R. performed qRT-PCR, C.M. performed lung function tests and assisted in the analysis of ELISPOT data, and M.Y. performed mouse surgeries. M.L.M. and R.S.P. provided stocks of RSV line 19, as well as guidance regarding virus propagation and use in mice. S.E.W. analyzed data and edited the manuscript. A.R. designed experiments, analyzed data and wrote the manuscript. P.R. conceived of the study, designed experiments, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Anuradha Ray or Prabir Ray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1520 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorthy, N., Khare, A., Oriss, T. et al. Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nat Med 18, 1525–1530 (2012). https://doi.org/10.1038/nm.2896

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2896

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing