Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Viral-induced T helper type 1 responses enhance allergic disease by effects on lung dendritic cells

Abstract

It is widely accepted that T helper type 1 (TH1) cytokines such as interferon-γ (IFN-γ) antagonize allergic diseases mediated by TH2 cytokines. The 'hygiene hypothesis' has also proposed that decreased childhood exposure to pathogen-derived TH1 cytokines may underlie the recent increased prevalence of asthma, a TH2-mediated disease. We show here that influenza A viral infection, which induces large amounts of intrapulmonary IFN-γ production, unexpectedly enhanced later allergen-specific asthma and promoted dual allergen–specific TH1 and TH2 responses. Pulmonary dendritic cells obtained from the lung after viral clearance and resolution of acute inflammation conferred enhanced allergic disease and concurrent TH1 and TH2 immune responses, and these effects were dependent on IFN-γ secreted during the acute viral infection. Thus, respiratory viral infection and the acute TH1 response can positively regulate TH2-dependent allergic pulmonary disease in vivo, at least in part, by altering pulmonary dendritic cell function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influenza A viral infection enhances subsequent allergen-induced inflammation and allergen-specific antibody in an IFN-γ-dependent way.
Figure 2: Influenza A viral infection leads to persistent formation of bronchus-associated lymphoid tissue and increased numbers of lung DCs at day 30 after inoculation.
Figure 3: Influenza A viral infection alters the number and phenotype of lung DCs.
Figure 4: IFN-γ mediates the effects of influenza infection on lung DC numbers and phenotype.
Figure 5: Lung DCs from post-flu mice have an enhanced capacity to promote CD4+ T cell activation and differentiation and to secrete IL-12.
Figure 6: Adoptive transfer of OVA-pulsed lung DCs from post-flu mice enhances allergic inflammation and allergen-specific IgG2a.
Figure 7: IFN-γ produced during acute viral infection acts on lung DCs to enhance their function in vivo.

Similar content being viewed by others

References

  1. Holgate, S.T. The epidemic of allergy and asthma. Nature 402, B2–4 (1999).

    Article  CAS  Google Scholar 

  2. Gern, J.E. & Busse, W.W. Relationship of viral infections to wheezing illnesses and asthma. Nat. Rev. Immunol. 2, 132–138 (2002).

    Article  CAS  Google Scholar 

  3. Redd, S.C. Asthma in the United States: burden and current theories. Environ. Health Perspect. 110, 557–560 (2002).

    Article  Google Scholar 

  4. Wills-Karp, M., Santeliz, J. & Karp, C.L. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat. Rev. Immunol. 1, 69–75 (2001).

    Article  CAS  Google Scholar 

  5. Morel, P.A. & Oriss, T.B. Crossregulation between Th1 and Th2 cells. Crit. Rev. Immunol. 18, 275–303 (1998).

    Article  CAS  Google Scholar 

  6. Erb, K.J., Holloway, J.W., Sobeck, A., Moll, H. & Le Gros, G. Infection of mice with Mycobacterium bovis-Bacillus Calmette-Guerin (BCG) suppresses allergen-induced airway eosinophilia. J. Exp. Med. 187, 561–569 (1998).

    Article  CAS  Google Scholar 

  7. Lewis, D.B. Allergy immunotherapy and inhibition of Th2 immune responses: a sufficient strategy? Curr. Opin. Immunol. 14, 644–651 (2002).

    Article  CAS  Google Scholar 

  8. Schwarze, J. & Gelfand, E.W. Respiratory viral infections as promoters of allergic sensitization and asthma in animal models. Eur. Respir. J. 19, 341–349 (2002).

    Article  CAS  Google Scholar 

  9. Martinez, F.D. What have we learned from the Tucson Children's Respiratory Study? Paediatr. Respir. Rev. 3, 193–197 (2002).

    Article  Google Scholar 

  10. Schwarze, J., Hamelmann, E., Bradley, K.L., Takeda, K. & Gelfand, E.W. Respiratory syncytial virus infection results in airway hyperresponsiveness and enhanced airway sensitization to allergen. J. Clin. Invest. 100, 226–233 (1997).

    Article  CAS  Google Scholar 

  11. Doherty, P.C. et al. Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol. Rev. 159, 105–117 (1997).

    Article  CAS  Google Scholar 

  12. Roman, E. et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J. Exp. Med. 196, 957–968 (2002).

    Article  CAS  Google Scholar 

  13. Doyle, A.G., Buttigieg, K., Groves, P., Johnson, B.J. & Kelso, A. The activated type 1-polarized CD8+ T cell population isolated from an effector site contains cells with flexible cytokine profiles. J. Exp. Med. 190, 1081–1092 (1999).

    Article  CAS  Google Scholar 

  14. Sarawar, S.R., Sangster, M., Coffman, R.L. & Doherty, P.C. Administration of anti-IFN-γ antibody to β2-microglobulin-deficient mice delays influenza virus clearance but does not switch the response to a T helper cell 2 phenotype. J. Immunol. 153, 1246–1253 (1994).

    CAS  PubMed  Google Scholar 

  15. Graham, M.B. et al. Response to influenza infection in mice with a targeted disruption in the interferon γ gene. J. Exp. Med. 178, 1725–1732 (1993).

    Article  CAS  Google Scholar 

  16. Eichelberger, M.C., Wang, M.L., Allan, W., Webster, R.G. & Doherty, P.C. Influenza virus RNA in the lung and lymphoid tissue of immunologically intact and CD4-depleted mice. J. Gen. Virol. 72, 1695–1698 (1991).

    Article  Google Scholar 

  17. Lloyd, C.M., Gonzalo, J.A., Coyle, A.J. & Gutierrez-Ramos, J.C. Mouse models of allergic airway disease. Adv. Immunol. 77, 263–295 (2001).

    Article  CAS  Google Scholar 

  18. Finkelman, F.D. et al. Lymphokine control of in vivo immunoglobulin isotype selection. Annu. Rev. Immunol. 8, 303–333 (1990).

    Article  CAS  Google Scholar 

  19. Coffman, R.L., Lebman, D.A. & Rothman, P. Mechanism and regulation of immunoglobulin isotype switching. Adv. Immunol. 54, 229–270 (1993).

    Article  CAS  Google Scholar 

  20. Lambrecht, B.N. et al. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J. Clin. Invest. 106, 551–559 (2000).

    Article  CAS  Google Scholar 

  21. Julia, V. et al. A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cells long after antigen exposure. Immunity 16, 271–283 (2002).

    Article  CAS  Google Scholar 

  22. Cella, M., Facchetti, F., Lanzavecchia, A. & Colonna, M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat. Immunol. 1, 305–310 (2000).

    Article  CAS  Google Scholar 

  23. Brimnes, M.K., Bonifaz, L., Steinman, R.M. & Moran, T.M. Influenza virus-induced dendritic cell maturation is associated with the induction of strong T cell immunity to a coadministered, normally nonimmunogenic protein. J. Exp. Med. 198, 133–144 (2003).

    Article  CAS  Google Scholar 

  24. Kolopp-Sarda, M.N., Bene, M.C., Massin, N., Moulin, J.J. & Faure, G.C. Immunohistological analysis of macrophages, B-cells, and T-cells in the mouse lung. Anat. Rec. 239, 150–157 (1994).

    Article  CAS  Google Scholar 

  25. Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    Article  CAS  Google Scholar 

  26. Murphy, K.M., Heimberger, A.B. & Loh, D.Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990).

    Article  CAS  Google Scholar 

  27. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003).

    Article  CAS  Google Scholar 

  28. Hansen, G., Berry, G., DeKruyff, R.H. & Umetsu, D.T. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced hyperreactivity but cause severe airway inflammation. J. Clin. Invest. 103, 175–183 (1999).

    Article  CAS  Google Scholar 

  29. Randolph, D.A., Stephens, R., Carruthers, C.J. & Chaplin, D.D. Cooperation between Th1 and Th2 cells in a murine model of eosinophilic airway inflammation. J. Clin. Invest. 104, 1021–1029 (1999).

    Article  CAS  Google Scholar 

  30. Mo, X.Y., Sarawar, S.R. & Doherty, P.C. Induction of cytokines in mice with parainfluenza pneumonia. J. Virol. 69, 1288–1291 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hussell, T., Spender, L.C., Georgiou, A., O'Garra, A. & Openshaw, P.J. Th1 and Th2 cytokine induction in pulmonary T cells during infection with respiratory syncytial virus. J. Gen. Virol. 77, 2447–2455 (1996).

    Article  CAS  Google Scholar 

  32. Schwarze, J. et al. IL-5 and eosinophils are essential for the development of airway hyperresponsiveness following acute respiratory syncytial virus infection. J. Immunol. 162, 2997–3004 (1999).

    CAS  PubMed  Google Scholar 

  33. Schwarze, J. et al. CD8 T cells are essential in the development of respiratory syncytial virus-induced lung eosinophilia and airway hyperresponsiveness. J. Immunol. 162, 4207–4211 (1999).

    CAS  PubMed  Google Scholar 

  34. Schwarze, J. et al. Transfer of the enhancing effect of respiratory syncytial virus infection on subsequent allergic airway sensitization by T lymphocytes. J. Immunol. 163, 5729–5734 (1999).

    CAS  PubMed  Google Scholar 

  35. Wohlleben, G. et al. Influenza A virus infection inhibits the efficient recruitment of Th2 cells into the airways and the development of airway eosinophilia. J. Immunol. 170, 4601–4611 (2003).

    Article  CAS  Google Scholar 

  36. Kuchroo, V.K., Umetsu, D.T., DeKruyff, R.H. & Freeman, G.J. The TIM gene family: emerging roles in immunity and disease. Nat. Rev. Immunol. 3, 454–462 (2003).

    Article  CAS  Google Scholar 

  37. Krug, N. et al. T-cell cytokine profile evaluated at the single cell level in BAL and blood in allergic asthma. Am. J. Respir. Cell. Mol. Biol. 14, 319–326 (1996).

    Article  CAS  Google Scholar 

  38. ten Hacken, N.H. et al. Elevated serum interferon-γ in atopic asthma correlates airways responsiveness and circadian peak expiratory flow variation. Eur. Respir. J. 11, 312–316 (1998).

    Article  CAS  Google Scholar 

  39. Sampath, D., Castro, M., Look, D.C. & Holtzman, M.J. Constitutive activation of an epithelial signal transducer and activator of transcription (STAT) pathway in asthma. J. Clin. Invest. 103, 1353–1361 (1999).

    Article  CAS  Google Scholar 

  40. Magnan, A.O. et al. Assessment of the Th1/Th2 paradigm in whole blood in atopy and asthma. Increased IFN-γ-producing CD8+ T cells in asthma. Am. J. Respir. Crit. Care Med. 161, 1790–1796 (2000).

    Article  CAS  Google Scholar 

  41. Yamamoto, N. et al. Dendritic cells are associated with augmentation of antigen sensitization by influenza A virus infection in mice. Eur. J. Immunol. 30, 316–326 (2000).

    Article  CAS  Google Scholar 

  42. Yamamoto, N. et al. Immune response induced by airway sensitization after influenza A virus infection depends on timing of antigen exposure in mice. J. Virol. 75, 499–505 (2001).

    Article  CAS  Google Scholar 

  43. Kamath, A.T., Henri, S., Battye, F., Tough, D.F. & Shortman, K. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100, 1734–1741 (2002).

    CAS  PubMed  Google Scholar 

  44. Cherwinski, H.M., Schumacher, J.H., Brown, K.D. & Mosmann, T.R. Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J. Exp. Med. 166 1229–1244 (1987).

    Article  CAS  Google Scholar 

  45. Tsitoura, D.C. et al. Respiratory infection with influenza A virus interferes with of tolerance to aeroallergens. J. Immunol. 165, 3484–3491 (2000).

    Article  CAS  Google Scholar 

  46. Dabbagh, K. et al. Local blockade of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI. J. Immunol. 165, 3418–3422 (2000).

    Article  CAS  Google Scholar 

  47. Dabbagh, K., Dahl, M.E., Stepick-Biek, P. & Lewis, D.B. Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J. Immunol. 168, 4524–4530 (2002).

    Article  CAS  Google Scholar 

  48. Lyons, A.B., Hasbold, J. & Hodgkin, P.D. Flow cytometric analysis of cell division history using dilution of carboxyfluorescein diacetate succinimidyl ester, a stably integrated fluorescent probe. Methods Cell Biol. 63, 375–398 (2001).

    Article  CAS  Google Scholar 

  49. Marrack, P., Shimonkevitz, R., Hannum, C., Haskins, K. & Kappler, J. The major histocompatibility complex-restricted antigen receptor on T cells. IV. An antiidiotypic antibody predicts both antigen and I-specificity. J. Exp. Med. 158, 1635–1646 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Doherty (University of Melbourne, Victoria, Australia) for providing the stocks of influenza A virus and control allantoic fluid; and M. Khan and E. Adams for technical assistance. Supported by the National Institutes of Health grant RO1 AI-44699, the American Lung Association grant RT-017-N, and the Allergy Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B Lewis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahl, M., Dabbagh, K., Liggitt, D. et al. Viral-induced T helper type 1 responses enhance allergic disease by effects on lung dendritic cells. Nat Immunol 5, 337–343 (2004). https://doi.org/10.1038/ni1041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing