Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense

Abstract

Intestinal phagocytes transport oral antigens and promote immune tolerance, but their role in innate immune responses remains unclear. Here we found that intestinal phagocytes were anergic to ligands for Toll-like receptors (TLRs) or commensals but constitutively expressed the precursor to interleukin 1β (pro-IL-1β). After infection with pathogenic Salmonella or Pseudomonas, intestinal phagocytes produced mature IL-1β through the NLRC4 inflammasome but did not produce tumor necrosis factor (TNF) or IL-6. BALB/c mice deficient in NLRC4 or the IL-1 receptor were highly susceptible to orogastric but not intraperitoneal infection with Salmonella. That enhanced lethality was preceded by impaired expression of endothelial adhesion molecules, lower neutrophil recruitment and poor intestinal pathogen clearance. Thus, NLRC4-dependent production of IL-1β by intestinal phagocytes represents a specific response that discriminates pathogenic bacteria from commensal bacteria and contributes to host defense in the intestine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High expression of pro-IL-1β by iMPs and hyporesponsiveness of iMPs to TLR stimulation.
Figure 2: Salmonella infection induces caspase-1 activation and IL-1β production in iMPs.
Figure 3: Pathogenic bacteria induce activation of the NLRC4 inflammasome in iMPs, but commensal bacteria do not.
Figure 4: Intestinal phagocytes express a functional NLRC4, but not NLRP3, inflammasome.
Figure 5: Nlrc4−/− mice are more susceptible to orogastric Salmonella infection but not to intraperitoneal Salmonella infection.
Figure 6: Il1r1−/− mice are more susceptible to orogastric Salmonella infection but not to intraperitoneal Salmonella infection.
Figure 7: The NLRC4 inflammasome promotes host defense through neutrophil recruitment in the intestine.

Similar content being viewed by others

References

  1. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Abraham, C. & Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 140, 1729–1737 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Franchi, L., Munoz-Planillo, R., Reimer, T., Eigenbrod, T. & Nunez, G. Inflammasomes as microbial sensors. Eur. J. Immunol. 40, 611–615 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Franchi, L. et al. Intracellular NOD-like receptors in innate immunity, infection and disease. Cell. Microbiol. 10, 1–8 (2008).

    CAS  PubMed  Google Scholar 

  5. Franchi, L., Eigenbrod, T., Munoz-Planillo, R. & Nunez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franchi, L., Warner, N., Viani, K. & Nunez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 227, 106–128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bauernfeind, F. et al. Inflammasomes: current understanding and open questions. Cell. Mol. Life Sci. 68, 765–783 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Amer, A. et al. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J. Biol. Chem. 281, 35217–35223 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Miao, E.A., Ernst, R.K., Dors, M., Mao, D.P. & Aderem, A. Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc. Natl. Acad. Sci. USA 105, 2562–2567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franchi, L. et al. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur. J. Immunol. 37, 3030–3039 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Miao, E.A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7, 569–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, e111 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Franchi, L. Role of inflammasomes in salmonella infection. Front Microbiol. 2, 8 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Miao, E.A. et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl. Acad. Sci. USA 107, 3076–3080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Kofoed, E.M. & Vance, R.E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lebeer, S., Vanderleyden, J. & De Keersmaecker, S.C. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat. Rev. Microbiol. 8, 171–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. MacDonald, T.T., Monteleone, I., Fantini, M.C. & Monteleone, G. Regulation of homeostasis and inflammation in the intestine. Gastroenterology 140, 1768–1775 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Manicassamy, S. et al. Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329, 849–853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Denning, T.L., Wang, Y.C., Patel, S.R., Williams, I.R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8, 1086–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Smythies, L.E. et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115, 66–75 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lotz, M. et al. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J. Exp. Med. 203, 973–984 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bauernfeind, F.G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Franchi, L., Eigenbrod, T. & Nunez, G. Cutting edge: TNF-α mediates sensitization to ATP and ailica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183, 792–796 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Kamada, N. et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis. J. Clin. Invest. 118, 2269–2280 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2839–2858 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lara-Tejero, M. et al. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J. Exp. Med. 203, 1407–1412 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dinarello, C.A. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur. J. Immunol. 41, 1203–1217 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Miao, E.A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Manicassamy, S. & Pulendran, B. Dendritic cell control of tolerogenic responses. Immunol. Rev. 241, 206–227 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith, P.D. et al. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol. 4, 31–42 (2011).

    Article  PubMed  Google Scholar 

  34. Smith, P.D. et al. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J. Immunol. 167, 2651–2656 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Uematsu, S. et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7, 868–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Monteleone, I., Platt, A.M., Jaensson, E., Agace, W.W. & Mowat, A.M. IL-10-dependent partial refractoriness to Toll-like receptor stimulation modulates gut mucosal dendritic cell function. Eur. J. Immunol. 38, 1533–1547 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol. 10, 1178–1184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smythies, L.E. et al. Inflammation anergy in human intestinal macrophages is due to Smad-induced IκBα expression and NF-κB inactivation. J. Biol. Chem. 285, 19593–19604 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, Y.G. et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34, 769–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rivera, J. & Tessarollo, L. Genetic background and the dilemma of translating mouse studies to humans. Immunity 28, 1–4 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Lara-Tejero, M. & Galan, J.E. Salmonella enterica serovar typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect. Immun. 77, 2635–2642 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raupach, B., Peuschel, S.K., Monack, D.M. & Zychlinsky, A. Caspase-1-mediated activation of interleukin-1β (IL-1β) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect. Immun. 74, 4922–4926 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miao, E.A., Rajan, J.V. & Aderem, A. Caspase-1-induced pyroptotic cell death. Immunol. Rev. 243, 206–214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grassl, G.A. & Finlay, B.B. Pathogenesis of enteric Salmonella infections. Curr. Opin. Gastroenterol. 24, 22–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, G.Y. & Nunez, G. Inflammasomes in intestinal inflammation and cancer. Gastroenterology 141, 1986–1999 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc. Natl. Acad. Sci. USA 107, 21635–21640 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Netea, M.G. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1β in monocytes and macrophages. Blood 113, 2324–2335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Piccini, A. et al. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1β and IL-18 secretion in an autocrine way. Proc. Natl. Acad. Sci. USA 105, 8067–8072 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H.L. Rosenzweig (Oregon Health & Science University) for Il1r1−/− BALB/c mice; P. Vandenabeele (Ghent University) for purified caspase-1; G.Y. Chen for critically reading the manuscript; and the University of Michigan Flow Cytometry Core, Immune Monitoring Core and Tissue Procurement Service for assistance. Supported by the US National Institutes of Health (R01 DK61707 to G.N.; T32-HL007517 to M.H.S.; and T32 HD007505 to A.B.), the University of Michigan Comprehensive Cancer Center (5 P30 CA46592), the Crohn's and Colitis Foundation of America (L.F. and N.K.) and the Tissue Core of the University of Michigan Comprehensive Cancer Center (CA46952).

Author information

Authors and Affiliations

Authors

Contributions

L.F., N.K. and G.N. conceived of the study; L.F. and N.K. designed and did most of the experiments; P.K. produced antibodies; S.S. and A.B. helped with experiments; P.K., S.S., A.B., M.H.S., Y.N. and Y.-G.K. helped design several experiments and provided advice; G.N. supervised all aspects of the study; and L.F. and G.N. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Gabriel Núñez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Note (PDF 697 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franchi, L., Kamada, N., Nakamura, Y. et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 13, 449–456 (2012). https://doi.org/10.1038/ni.2263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2263

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing