Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1

Abstract

In response to stimulation with proinflammatory cytokines, the deubiquitinase A20 inducibly interacts with the regulatory molecules TAX1BP1, Itch and RNF11 to form the A20 ubiquitin-editing complex. However, the molecular signal that coordinates the assembly of this complex has remained elusive. Here we demonstrate that TAX1BP1 was inducibly phosphorylated on Ser593 and Ser624 in response to proinflammatory stimuli. The kinase IKKα, but not IKKβ, was required for phosphorylation of TAX1BP1 and directly phosphorylated TAX1BP1 in response to stimulation with tumor necrosis factor (TNF) or interleukin 1 (IL-1). TAX1BP1 phosphorylation was pivotal for cytokine-dependent interactions among TAX1BP1, A20, Itch and RNF11 and downregulation of signaling by the transcription factor NF-κB. IKKα therefore serves a key role in the negative feedback of NF-κB canonical signaling by orchestrating assembly of the A20 ubiquitin-editing complex to limit inflammatory gene activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphorylation of TAX1BP1 in response to proinflammatory stimuli.
Figure 2: Phosphorylation of TAX1BP1 on Ser593 and Ser624 in response to stimulation with TNF or IL-1.
Figure 3: Phosphorylation of TAX1BP1 is essential for the termination of NF-κB signaling, Jnk phosphorylation and RIP1 ubiquitination.
Figure 4: Phosphorylation of TAX1BP1 regulates recruitment of the A20 ubiquitin-editing complex to TRAF2 and TRAF6.
Figure 5: Phosphorylation of TAX1BP1 is required for assembly of the A20 ubiquitin-editing complex.
Figure 6: IKKα is essential for assembly of the A20 ubiquitin-editing complex and termination of NF-κB signaling.
Figure 7: Phospho-mimetic TAX1BP1 bypasses the requirement for IKKα in terminating NF-κB signaling.
Figure 8: HTLV-I Tax blocks the phosphorylation of TAX1BP1.

Similar content being viewed by others

References

  1. Grivennikov, S.I., Greten, F.R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  Google Scholar 

  2. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    Article  CAS  Google Scholar 

  3. Ghosh, S. & Hayden, M.S. New regulators of NF-κB in inflammation. Nat. Rev. Immunol. 8, 837–848 (2008).

    Article  CAS  Google Scholar 

  4. Zandi, E., Rothwarf, D.M., Delhase, M., Hayakawa, M. & Karin, M. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91, 243–252 (1997).

    Article  CAS  Google Scholar 

  5. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93, 1231–1240 (1998).

    Article  CAS  Google Scholar 

  6. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    Article  Google Scholar 

  7. Coope, H.J. et al. CD40 regulates the processing of NF-κB2 p100 to p52. EMBO J. 21, 5375–5385 (2002).

    Article  CAS  Google Scholar 

  8. Claudio, E., Brown, K., Park, S., Wang, H. & Siebenlist, U. BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells. Nat. Immunol. 3, 958–965 (2002).

    Article  CAS  Google Scholar 

  9. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  Google Scholar 

  10. Xiao, G., Harhaj, E.W. & Sun, S.C.N.F. -κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 7, 401–409 (2001).

    Article  CAS  Google Scholar 

  11. Sun, S.C., Ganchi, P.A., Ballard, D.W. & Greene, W.C.N.F. -κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259, 1912–1915 (1993).

    Article  CAS  Google Scholar 

  12. Sun, S.C. Deubiquitylation and regulation of the immune response. Nat. Rev. Immunol. 8, 501–511 (2008).

    Article  CAS  Google Scholar 

  13. Harhaj, E.W. & Dixit, V.M. Deubiquitinases in the regulation of NF-κB signaling. Cell Res. 21, 22–39 (2011).

    Article  CAS  Google Scholar 

  14. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  Google Scholar 

  15. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  Google Scholar 

  16. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  17. Reiley, W.W. et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J. Exp. Med. 204, 1475–1485 (2007).

    Article  CAS  Google Scholar 

  18. Jin, W. et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J. Clin. Invest. 118, 1858–1866 (2008).

    Article  CAS  Google Scholar 

  19. Turer, E.E. et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

    Article  CAS  Google Scholar 

  20. Sass, G. et al. TNF pretreatment interferes with mitochondrial apoptosis in the mouse liver by A20-mediated down-regulation of Bax. J. Immunol. 179, 7042–7049 (2007).

    Article  CAS  Google Scholar 

  21. Coornaert, B., Carpentier, I. & Beyaert, R. A20: Central gatekeeper in inflammation and immunity. J. Biol. Chem. 284, 8217–8221 (2008).

    Article  Google Scholar 

  22. Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  Google Scholar 

  23. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).

    Article  CAS  Google Scholar 

  24. Kato, M. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 459, 712–716 (2009).

    Article  CAS  Google Scholar 

  25. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  Google Scholar 

  26. Shembade, N., Ma, A. & Harhaj, E.W. Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135–1139 (2010).

    Article  CAS  Google Scholar 

  27. Shembade, N. & Harhaj, E.W. A20 inhibition of NF-κB and inflammation: Targeting E2:E3 ubiquitin enzyme complexes. Cell Cycle 9, 2481–2482 (2010).

    Article  CAS  Google Scholar 

  28. Shembade, N., Parvatiyar, K., Harhaj, N.S. & Harhaj, E.W. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-κB signalling. EMBO J. 28, 513–522 (2009).

    Article  CAS  Google Scholar 

  29. Shembade, N., Harhaj, N.S., Liebl, D.J. & Harhaj, E.W. Essential role for TAX1BP1 in the termination of TNF-α-, IL-1- and LPS-mediated NF-κB and JNK signaling. EMBO J. 26, 3910–3922 (2007).

    Article  CAS  Google Scholar 

  30. Iha, H. et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-kappaB activation. EMBO J. 27, 629–641 (2008).

    Article  CAS  Google Scholar 

  31. Matsuoka, M. Human T-cell leukemia virus type I and adult T-cell leukemia. Oncogene 22, 5131–5140 (2003).

    Article  CAS  Google Scholar 

  32. Robek, M.D. & Ratner, L. Immortalization of CD4+ and CD8+ T lymphocytes by human T-cell leukemia virus type 1 Tax mutants expressed in a functional molecular clone. J. Virol. 73, 4856–4865 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun, S.C. & Yamaoka, S. Activation of NF-κB by HTLV-I and implications for cell transformation. Oncogene 24, 5952–5964 (2005).

    Article  CAS  Google Scholar 

  34. Harhaj, E.W. & Sun, S.C. IKKγ serves as a docking subunit of the IκB kinase (IKK) and mediates interaction of IKK with the human T-cell leukemia virus Tax protein. J. Biol. Chem. 274, 22911–22914 (1999).

    Article  CAS  Google Scholar 

  35. Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat. Immunol. 9, 254–262 (2008).

    Article  CAS  Google Scholar 

  36. Hutti, J.E. et al. IKKβ phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway. Mol. Cell. Biol. 27, 7451–7461 (2007).

    Article  CAS  Google Scholar 

  37. Hutti, J.E. et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKɛ promotes cell transformation. Mol. Cell 34, 461–472 (2009).

    Article  CAS  Google Scholar 

  38. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  Google Scholar 

  39. Jin, D.Y. et al. A human suppressor of c-Jun N-terminal kinase 1 activation by tumor necrosis factor α. J. Biol. Chem. 272, 25816–25823 (1997).

    Article  CAS  Google Scholar 

  40. Gachon, F. et al. CREB-2, a cellular CRE-dependent transcription repressor, functions in association with Tax as an activator of the human T-cell leukemia virus type 1 promoter. J. Virol. 72, 8332–8337 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Journo, C. et al. NRP/Optineurin Cooperates with TAX1BP1 to potentiate the activation of NF-κB by human T-lymphotropic virus type 1 Tax protein. PLoS Pathog. 5, e1000521 (2009).

    Article  Google Scholar 

  42. Xiao, G. et al. Retroviral oncoprotein Tax induces processing of NF-(B2/p100 in T cells: evidence for the involvement of IKKα. EMBO J. 20, 6805–6815 (2001).

    Article  CAS  Google Scholar 

  43. Zarnegar, B., Yamazaki, S., He, J.Q. & Cheng, G. Control of canonical NF-κB activation through the NIK-IKK complex pathway. Proc. Natl. Acad. Sci. USA 105, 3503–3508 (2008).

    Article  CAS  Google Scholar 

  44. Razani, B. et al. Negative feedback in noncanonical NF-κB signaling modulates NIK stability through IKKα-mediated phosphorylation. Sci. Signal. 3, ra41 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. Li, Q. et al. Enhanced NF-κB activation and cellular function in macrophages lacking IκB kinase 1 (IKK1). Proc. Natl. Acad. Sci. USA 102, 12425–12430 (2005).

    Article  CAS  Google Scholar 

  46. Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V. & Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138–1143 (2005).

    Article  CAS  Google Scholar 

  47. Liu, B. et al. Proinflammatory stimuli induce IKKα-mediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell 129, 903–914 (2007).

    Article  CAS  Google Scholar 

  48. Miura, H., Maeda, M., Yamamoto, N. & Yamaoka, S. Distinct IκB kinase regulation in adult T cell leukemia and HTLV-I-transformed cells. Exp. Cell Res. 308, 29–40 (2005).

    Article  CAS  Google Scholar 

  49. Harhaj, N.S., Janic, B., Ramos, J.C., Harrington, W.J. Jr. & Harhaj, E.W. Deregulated expression of CD40 ligand in HTLV-I infection: distinct mechanisms of downregulation in HTLV-I-transformed cell lines and ATL patients. Virology 362, 99–108 (2007).

    Article  CAS  Google Scholar 

  50. Kwon, H. et al. Lethal cutaneous disease in transgenic mice conditionally expressing type I human T cell leukemia virus Tax. J. Biol. Chem. 280, 35713–35722 (2005).

    Article  CAS  Google Scholar 

  51. Wang, X., Naidu, S.R., Sverdrup, F. & Androphy, E.J. Tax1BP1 interacts with papillomavirus E2 and regulates E2-dependent transcription and stability. J. Virol. 83, 2274–2284 (2009).

    Article  CAS  Google Scholar 

  52. Sivaram, M.V., Wadzinski, T.L., Redick, S.D., Manna, T. & Doxsey, S.J. Dynein light intermediate chain 1 is required for progress through the spindle assembly checkpoint. EMBO J. 28, 902–914 (2009).

    Article  CAS  Google Scholar 

  53. Shembade, N., Harhaj, N.S., Yamamoto, M., Akira, S. & Harhaj, E.W. The human T-cell leukemia virus type 1 Tax oncoprotein requires the ubiquitin-conjugating enzyme Ubc13 for NF-κB activation. J. Virol. 81, 13735–13742 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Sun (University of Texas MD Anderson) for hemagglutinin-tagged IKKα, IKKα(K44M), IKKβ and IKKγ (NEMO), and IκBα amino acids 1–54 fused to GST; W. Greene (Gladstone Institute of Virology) for Jurkat Tax Tet-on cells; M. Maeda (Kyoto University) for TL-OM1 cells; M. Birnbaum (University of Pennsylvania) for MEFs doubly deficient in both Akt1 and Akt2; M. Karin (University of California San Diego) for Ikka−/−, Ikbkb−/− and Ikbkg−/− MEFs; E. Androphy (University of Massachusetts) for Flag-TAX1BP1 amino acids 1–789; and J. Leszyk for mass spectrometry and analysis. Supported by the US National Institutes of Health (RO1GM083143 and RO1CA135362 to E.W.H.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute, National Institute of General Medical Sciences or the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

N.S., R.P. and N.S.H. did experiments and analyzed data; D.W.A. provided reagents and did bioinformatic analyses; and E.W.H. designed and supervised the experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Edward W Harhaj.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Methods (PDF 4596 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shembade, N., Pujari, R., Harhaj, N. et al. The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1. Nat Immunol 12, 834–843 (2011). https://doi.org/10.1038/ni.2066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing