Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease

Abstract

Germline mutations in CYBB, the human gene encoding the gp91phox subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This 'experiment of nature' indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CYBB mutations encoding Q231P and T178 substitutions in XR-MSMD-2.
Figure 2: NADPH oxidase activity in PMNs and monocytes.
Figure 3: NADPH oxidase activity in MDMs.
Figure 4: NADPH oxidase activity in EBV-B cells.
Figure 5: Expression of gp91phox and flavocytochrome b558.
Figure 6: Expression and function of mutant gp91phox in cell lines.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Casanova, J.L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    Article  CAS  Google Scholar 

  2. Alcais, A., Fieschi, C., Abel, L. & Casanova, J.L. Tuberculosis in children and adults: two distinct genetic diseases. J. Exp. Med. 202, 1617–1621 (2005).

    Article  CAS  Google Scholar 

  3. Filipe-Santos, O. et al. Inborn errors of IL-12/23- and IFN-γ-mediated immunity: molecular, cellular, and clinical features. Semin. Immunol. 18, 347–361 (2006).

    Article  CAS  Google Scholar 

  4. Bustamante, J. et al. A novel X-linked recessive form of Mendelian susceptibility to mycobaterial disease. J. Med. Genet. 44, e65 (2007).

    Article  Google Scholar 

  5. Filipe-Santos, O. et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J. Exp. Med. 203, 1745–1759 (2006).

    Article  CAS  Google Scholar 

  6. Notarangelo, L.D. et al. Primary immunodeficiencies: 2009 update. J. Allergy Clin. Immunol. 124, 1161–1178 (2009).

    Article  CAS  Google Scholar 

  7. Roos, D. et al. Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells Mol. Dis. 45, 246–265 (2010).

    Article  CAS  Google Scholar 

  8. Mouy, R., Fischer, A., Vilmer, E., Seger, R. & Griscelli, C. Incidence, severity, and prevention of infections in chronic granulomatous disease. J. Pediatr. 114, 555–560 (1989).

    Article  CAS  Google Scholar 

  9. Segal, B.H., Leto, T.L., Gallin, J.I., Malech, H.L. & Holland, S.M. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 79, 170–200 (2000).

    Article  CAS  Google Scholar 

  10. Winkelstein, J.A. et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79, 155–169 (2000).

    Article  CAS  Google Scholar 

  11. Bustamante, J. et al. BCG-osis and tuberculosis in a child with chronic granulomatous disease. J. Allergy Clin. Immunol. 120, 32–38 (2007).

    Article  Google Scholar 

  12. Lee, P.P. et al. Susceptibility to mycobacterial infections in children with X-linked chronic granulomatous disease: a review of 17 patients living in a region endemic for tuberculosis. Pediatr. Infect. Dis. J. 27, 224–230 (2008).

    Article  Google Scholar 

  13. van den Berg, J.M. et al. Chronic granulomatous disease: the European experience. PLoS ONE 4, e5234 (2009).

    Article  Google Scholar 

  14. Mohanty, J.G., Jaffe, J.S., Schulman, E.S. & Raible, D.G. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J. Immunol. Methods 202, 133–141 (1997).

    Article  CAS  Google Scholar 

  15. Nakagawara, A., Nathan, C.F. & Cohn, Z.A. Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J. Clin. Invest. 68, 1243–1252 (1981).

    Article  CAS  Google Scholar 

  16. Martinez, F.O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177, 7303–7311 (2006).

    Article  CAS  Google Scholar 

  17. Reichenbach, J. et al. Mycobacterial diseases in primary immunodeficiencies. Curr. Opin. Allergy Clin. Immunol. 1, 503–511 (2001).

    Article  CAS  Google Scholar 

  18. Conley, M.E. et al. Primary B cell immunodeficiencies: comparisons and contrasts. Annu. Rev. Immunol. 27, 199–227 (2009).

    Article  CAS  Google Scholar 

  19. Condino-Neto, A. & Newburger, P.E. NADPH oxidase activity and cytochrome b558 content of human Epstein-Barr-virus-transformed B lymphocytes correlate with expression of genes encoding components of the oxidase system. Arch. Biochem. Biophys. 360, 158–164 (1998).

    Article  CAS  Google Scholar 

  20. Porter, C.D. et al. p22-phox-deficient chronic granulomatous disease: reconstitution by retrovirus-mediated expression and identification of a biosynthetic intermediate of gp91-phox. Blood 84, 2767–2775 (1994).

    CAS  PubMed  Google Scholar 

  21. Maly, F.E. et al. Restitution of superoxide generation in autosomal cytochrome-negative chronic granulomatous disease (A22(0) CGD)-derived B lymphocyte cell lines by transfection with p22phax cDNA. J. Exp. Med. 178, 2047–2053 (1993).

    Article  CAS  Google Scholar 

  22. Yu, L. et al. Biosynthesis of flavocytochrome b558. gp91phox is synthesized as a 65-kDa precursor (p65) in the endoplasmic reticulum. J. Biol. Chem. 274, 4364–4369 (1999).

    Article  CAS  Google Scholar 

  23. DeLeo, F.R. et al. Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J. Biol. Chem. 275, 13986–13993 (2000).

    Article  CAS  Google Scholar 

  24. Yu, L., Zhen, L. & Dinauer, M.C. Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Role of heme incorporation and heterodimer formation in maturation and stability of gp91phox and p22phox subunits. J. Biol. Chem. 272, 27288–27294 (1997).

    Article  CAS  Google Scholar 

  25. Nakamura, M., Murakami, M., Koga, T., Tanaka, Y. & Minakami, S. Monoclonal antibody 7D5 raised to cytochrome b558 of human neutrophils: immunocytochemical detection of the antigen in peripheral phagocytes of normal subjects, patients with chronic granulomatous disease, and their carrier mothers. Blood 69, 1404–1408 (1987).

    CAS  PubMed  Google Scholar 

  26. Biberstine-Kinkade, K.J. et al. Heme-ligating histidines in flavocytochrome b(558): identification of specific histidines in gp91phox. J. Biol. Chem. 276, 31105–31112 (2001).

    Article  CAS  Google Scholar 

  27. Heyworth, P.G. et al. Hematologically important mutations: X-linked chronic granulomatous disease (second update). Blood Cells Mol. Dis. 27, 16–26 (2001).

    Article  CAS  Google Scholar 

  28. Porter, C.D., Kuribayashi, F., Parkar, M.H., Roos, D. & Kinnon, C. Detection of gp91-phox precursor protein in B-cell lines from patients with X-linked chronic granulomatous disease as an indicator for mutations impairing cytochrome b558 biosynthesis. Biochem. J. 315, 571–575 (1996).

    Article  CAS  Google Scholar 

  29. Yamauchi, A. et al. Location of the epitope for 7D5, a monoclonal antibody raised against human flavocytochrome b558, to the extracellular peptide portion of primate gp91phox. Microbiol. Immunol. 45, 249–257 (2001).

    Article  CAS  Google Scholar 

  30. Burritt, J.B. et al. Phage display epitope mapping of human neutrophil flavocytochrome b558. Identification of two juxtaposed extracellular domains. J. Biol. Chem. 276, 2053–2061 (2001).

    Article  CAS  Google Scholar 

  31. Cassatella, M.A. et al. Molecular basis of interferon-γ and lipopolysaccharide enhancement of phagocyte respiratory burst capability. Studies on the gene expression of several NADPH oxidase components. J. Biol. Chem. 265, 20241–20246 (1990).

    CAS  PubMed  Google Scholar 

  32. Ezekowitz, R.A., Dinauer, M.C., Jaffe, H.S., Orkin, S.H. & Newburger, P.E. Partial correction of the phagocyte defect in patients with X-linked chronic granulomatous disease by subcutaneous interferon γ. N. Engl. J. Med. 319, 146–151 (1988).

    Article  CAS  Google Scholar 

  33. Ding, C. et al. High-level reconstitution of respiratory burst activity in a human X-linked chronic granulomatous disease (X-CGD) cell line and correction of murine X–CGD bone marrow cells by retroviral-mediated gene transfer of human gp91phox. Blood 88, 1834–1840 (1996).

    CAS  PubMed  Google Scholar 

  34. Ezekowitz, R.A. et al. Restoration of phagocyte function by interferon-γ in X-linked chronic granulomatous disease occurs at the level of a progenitor cell. Blood 76, 2443–2448 (1990).

    CAS  PubMed  Google Scholar 

  35. Zhen, L. et al. Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc. Natl. Acad. Sci. USA 90, 9832–9836 (1993).

    Article  CAS  Google Scholar 

  36. Casbon, A.J., Allen, L.A., Dunn, K.W. & Dinauer, M.C. Macrophage NADPH oxidase flavocytochrome B localizes to the plasma membrane and Rab11-positive recycling endosomes. J. Immunol. 182, 2325–2339 (2009).

    Article  CAS  Google Scholar 

  37. Zhu, Y. et al. Deletion mutagenesis of p22phox subunit of flavocytochrome b558: identification of regions critical for gp91phox maturation and NADPH oxidase activity. J. Biol. Chem. 281, 30336–30346 (2006).

    Article  CAS  Google Scholar 

  38. Biberstine-Kinkade, K.J. et al. Mutagenesis of p22phox histidine 94. A histidine in this position is not required for flavocytochrome b558 function. J. Biol. Chem. 277, 30368–30374 (2002).

    Article  CAS  Google Scholar 

  39. Perkins, S.L., Link, D.C., Kling, S., Ley, T.J. & Teitelbaum, S.L. 1,25-Dihydroxyvitamin D3 induces monocytic differentiation of the PLB-985 leukemic line and promotes c-fgr mRNA expression. J. Leukoc. Biol. 50, 427–433 (1991).

    Article  CAS  Google Scholar 

  40. Jitkaew, S., Witasp, E., Zhang, S., Kagan, V.E. & Fadeel, B. Induction of caspase- and reactive oxygen species-independent phosphatidylserine externalization in primary human neutrophils: role in macrophage recognition and engulfment. J. Leukoc. Biol. 85, 427–437 (2009).

    Article  CAS  Google Scholar 

  41. Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126, 205–218 (2006).

    Article  CAS  Google Scholar 

  42. Adams, L.B., Dinauer, M.C., Morgenstern, D.E. & Krahenbuhl, J.L. Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuber. Lung Dis. 78, 237–246 (1997).

    Article  CAS  Google Scholar 

  43. Segal, B.H. et al. The p47(phox−/−) mouse model of chronic granulomatous disease has normal granuloma formation and cytokine responses to Mycobacterium avium and Schistosoma mansoni eggs. Infect. Immun. 67, 1659–1665 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nathan, C. & Shiloh, M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97, 8841–8848 (2000).

    Article  CAS  Google Scholar 

  45. MacMicking, J., Xie, Q.W. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350 (1997).

    Article  CAS  Google Scholar 

  46. Casanova, J.L. & Abel, L. Primary immunodeficiencies: a field in its infancy. Science 317, 617–619 (2007).

    Article  CAS  Google Scholar 

  47. Alcais, A., Abel, L. & Casanova, J.L. Human genetics of infectious diseases: between proof of principle and paradigm. J. Clin. Invest. 119, 2506–2514 (2009).

    Article  CAS  Google Scholar 

  48. Gordon, S. & Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).

    Article  CAS  Google Scholar 

  49. Segal, A.W. How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197–223 (2005).

    Article  CAS  Google Scholar 

  50. Price, M.O. et al. Creation of a genetic system for analysis of the phagocyte respiratory burst: high-level reconstitution of the NADPH oxidase in a nonhematopoietic system. Blood 99, 2653–2661 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the family members for participating in this study; J. Curnutte (3-V Biosciences) for EBV-B cells from CGD controls; D. Roos (University of Amsterdam) for mAb 449; F. Morel (Grenoble University) for mAb 7A2; M. Quinn (Montana State University) for mAb 54.1; all members of the two branches of the laboratory of Human Genetics of Infectious Diseases for discussions; and T. Leclerc, Y. Rose, M. de Suremain, M. Kezadi, and N. Stull for technical assistance. Supported by Institut National de la Santé et de la Recherche Médicale (J.B.), the European Union (NEOTIM EEA05095KKA to J.B., and HOMITB HEALTH-F3-2008-200732), the March of Dimes (RO5050KK to J.B.), Fundação de Amparo a Pesquisa do Estado de São Paulo (A.C.-N.), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (A.C.-N.), Fondation BNP-Paribas, Fondation Schlumberger, Institut Universitaire de France, Agence Nationale de Recherche, The Rockefeller University Center for Clinical and Translational Science (5UL1RR024143-03), The Rockefeller University, the National Institutes of Health (AI 079788 and DK54369 to P.E.N., and HL045635 to M.C.D.), the Riley Children's Foundation (M.C.D.) and the Howard Hughes Medical Institute (J.-L.C.).

Author information

Authors and Affiliations

Authors

Contributions

J.B., L.A. and J.-L.C. designed the study and contributed intellectually to the experimental process; J.B. did most of the experiments under the supervision of J.-L.C.; A.A.A., C.C.M., E.V. and M.C.D. did the experiments with retroviral transduction of gp91phox into EBV-B, CHO and PLB-985 cells; G.V. made the nonretroviral CYBB vectors, infected macrophages with BCG and made intellectual contributions to various experiments; C. Picard contributed to the recruitment of patients and initiated the clinical investigation; L.B.G., C. Prando, L.J. and M.H. analyzed many controls; A.C. did quantitative RT-PCR; L.d.B. did bioinformatics analysis; J.-F.E. did histological analysis of lymph nodes; B.W. did immunoperoxidase staining; A.V.G., C.B. and A.B. provided data for linkage analysis; A.P., J.F. and S.B.-D. provided experimental advice about cell culture; J.-M.B., S.B., O.L. and C.F. contributed to the recruitment and follow-up of the patients and CGD controls; S.A.-M., P.N., A.C.-N. and M.C.D. provided CGD controls and intellectual guidance for the development of various assays; J.B. and J.-L.C. wrote the paper; and all authors commented on and discussed the paper. B.W., P.E.N., A.C.-N. and M.C.D. contributed equally to this work.

Corresponding author

Correspondence to Jean-Laurent Casanova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1573 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustamante, J., Arias, A., Vogt, G. et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol 12, 213–221 (2011). https://doi.org/10.1038/ni.1992

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing