Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis

Abstract

The fate of infected macrophages has an essential role in protection against Mycobacterium tuberculosis by regulating innate and adaptive immunity. M. tuberculosis exploits cell necrosis to exit from macrophages and spread. In contrast, apoptosis, which is characterized by an intact plasma membrane, is an innate mechanism that results in lower bacterial viability. Virulent M. tuberculosis inhibits apoptosis and promotes necrotic cell death by inhibiting production of prostaglandin E2. Here we show that by activating the 5-lipoxygenase pathway, M. tuberculosis not only inhibited apoptosis but also prevented cross-presentation of its antigens by dendritic cells, which impeded the initiation of T cell immunity. Our results explain why T cell priming in response to M. tuberculosis is delayed and emphasize the importance of early immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition by 5-lipoxygenase of the early initiation of an immune response after M. tuberculosis infection.
Figure 2: Transfer of M. tuberculosis–infected Alox5−/− macrophages into wild-type mice recapitulates the phenotype of intact Alox5−/− mice.
Figure 3: Transfer of infected Alox5−/− alveolar macrophages generates pulmonary and systemic CD4+ and CD8+ T cell responses.
Figure 4: CD8+ T cell activation induced by M. tuberculosis–infected Alox5−/− macrophages requires cross-presentation by CD11c+ DCs.
Figure 5: Caspase-dependent apoptosis of M. tuberculosis-infected Alox5−/− macrophages is required for the early initiation of T cell immunity.

Similar content being viewed by others

References

  1. Barry, C.E. III et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845–855 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhatt, K. & Salgame, P. Host innate immune response to Mycobacterium tuberculosis. J. Clin. Immunol. 27, 347–362 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Russell, D.G., Mwandumba, H.C. & Rhoades, E.E. Mycobacterium and the coat of many lipids. J. Cell Biol. 158, 421–426 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sturgill-Koszycki, S., Schaible, U.E. & Russell, D.G. Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J. 15, 6960–6968 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fink, S.L. & Cookson, B.T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 73, 1907–1916 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peters, N.C. et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321, 970–974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. John, B. & Hunter, C.A. Immunology. Neutrophil soldiers or Trojan horses? Science 321, 917–918 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Bergsbaken, T. & Cookson, B.T. Macrophage activation redirects Yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 3, e161 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Haimovich, B. & Venkatesan, M.M. Shigella and Salmonella: death as a means of survival. Microbes Infect. 8, 568–577 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki, T. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog. 3, e111 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tunbridge, A.J. et al. Inhibition of macrophage apoptosis by Neisseria meningitidis requires nitric oxide detoxification mechanisms. Infect. Immun. 74, 729–733 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Divangahi, M. et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol. 10, 899–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, M. et al. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med. 205, 2791–2801 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, M., Gan, H. & Remold, H.G. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J. Immunol. 176, 3707–3716 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Keane, J., Remold, H.G. & Kornfeld, H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J. Immunol. 164, 2016–2020 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Hinchey, J. et al. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J. Clin. Invest. 117, 2279–2288 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Velmurugan, K. et al. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog. 3, e110 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee, J., Remold, H.G., Ieong, M.H. & Kornfeld, H. Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. J. Immunol. 176, 4267–4274 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Duan, L., Gan, H., Arm, J. & Remold, H.G. Cytosolic phospholipase A2 participates with TNF-α in the induction of apoptosis of human macrophages infected with Mycobacterium tuberculosis H37Ra. J. Immunol. 166, 7469–7476 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Gan, H. et al. Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat. Immunol. 9, 1189–1197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oddo, M. et al. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J. Immunol. 160, 5448–5454 (1998).

    CAS  PubMed  Google Scholar 

  22. Brookes, R.H. et al. CD8+ T cell-mediated suppression of intracellular Mycobacterium tuberculosis growth in activated human macrophages. Eur. J. Immunol. 33, 3293–3302 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Tobin, D.M. et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140, 717–730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yrlid, U. & Wick, M.J. Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J. Exp. Med. 191, 613–624 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inaba, K. et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J. Exp. Med. 188, 2163–2173 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Albert, M.L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Sadagopal, S. et al. Reducing the activity and secretion of microbial antioxidants enhances the immunogenicity of BCG. PLoS. One. 4, e5531 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schaible, U.E. et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med. 9, 1039–1046 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Winau, F. et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24, 105–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Winau, F., Kaufmann, S.H. & Schaible, U.E. Apoptosis paves the detour path for CD8 T cell activation against intracellular bacteria. Cell. Microbiol. 6, 599–607 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Chackerian, A.A., Alt, J.M., Perera, T.V., Dascher, C.C. & Behar, S.M. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun. 70, 4501–4509 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wolf, A.J. et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J. Exp. Med. 205, 105–115 (2007).

    Article  PubMed  Google Scholar 

  33. Tian, T., Woodworth, J., Skold, M. & Behar, S.M. In vivo depletion of CD11c+ cells delays the CD4+ T cell response to Mycobacterium tuberculosis and exacerbates the outcome of infection. J. Immunol. 175, 3268–3272 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Wolf, A.J. et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol. 179, 2509–2519 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Henderson, R.A., Watkins, S.C. & Flynn, J.L. Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J. Immunol. 159, 635–643 (1997).

    CAS  PubMed  Google Scholar 

  36. Bafica, A. et al. Host control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase-dependent lipoxin production. J. Clin. Invest. 115, 1601–1606 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sada-Ovalle, I., Chiba, A., Gonzales, A., Brenner, M.B. & Behar, S.M. Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-γ, and kill intracellular bacteria. PLoS Pathog. 4, e1000239 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Woodworth, J.S., Wu, Y. & Behar, S.M. Mycobacterium tuberculosis-specific CD8+ T cells require perforin to kill target cells and provide protection in vivo. J. Immunol. 181, 8595–8603 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Ramachandra, L., Noss, E., Boom, W.H. & Harding, C.V. Processing of Mycobacterium tuberculosis antigen 85B involves intraphagosomal formation of peptide-major histocompatibility complex II complexes and is inhibited by live bacilli that decrease phagosome maturation. J. Exp. Med. 194, 1421–1432 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duan, L., Gan, H., Golan, D.E. & Remold, H.G. Critical role of mitochondrial damage in determining outcome of macrophage infection with Mycobacterium tuberculosis. J. Immunol. 169, 5181–5187 (2002).

    Article  PubMed  Google Scholar 

  41. Gan, H. et al. Enhancement of antimycobacterial activity of macrophages by stabilization of inner mitochondrial membrane potential. J. Infect. Dis. 191, 1292–1300 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Srinivasan, A., Foley, J., Ravindran, R. & McSorley, S.J. Low-dose Salmonella infection evades activation of flagellin-specific CD4 T cells. J. Immunol. 173, 4091–4099 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Kursar, M. et al. Organ-specific CD4+ T cell response during Listeria monocytogenes infection. J. Immunol. 168, 6382–6387 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Lira, R., Doherty, M., Modi, G. & Sacks, D. Evolution of lesion formation, parasitic load, immune response, and reservoir potential in C57BL/6 mice following high- and low-dose challenge with Leishmania major. Infect. Immun. 68, 5176–5182 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moskophidis, D. & Kioussis, D. Contribution of virus-specific CD8+ cytotoxic T cells to virus clearance or pathologic manifestations of influenza virus infection in a T cell receptor transgenic mouse model. J. Exp. Med. 188, 223–232 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wallgren, A. The time-table of tuberculosis. Tubercle 29, 245–251 (1948).

    Article  CAS  PubMed  Google Scholar 

  47. Kono, H. & Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pozzi, L.A., Maciaszek, J.W. & Rock, K.L. Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells. J. Immunol. 175, 2071–2081 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Kovacsovics-Bankowski, M., Clark, K., Benacerraf, B. & Rock, K.L. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc. Natl. Acad. Sci. USA 90, 4942–4946 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaufmann, S.H. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 1, 20–30 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Koller (University of North Carolina) for Alox5−/− and Ptges−/− mice. Supported by the US National Institutes of Health (AI 067731 to S.M.B. and AI072143 to H.G.R.), the Fonds de la Recherche en Santé du Québec (M.D.) and Fundação para a Ciência e Tecnologia of Portugal (C.N.-A.).

Author information

Authors and Affiliations

Authors

Contributions

M.D., D.D., C.N.-A. and S.M.B. designed, did and analyzed experiments; and M.D., H.G.R. and S.M.B. wrote the manuscript with advice from D.D. and C.N.-A.

Corresponding authors

Correspondence to Heinz G Remold or Samuel M Behar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 5281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divangahi, M., Desjardins, D., Nunes-Alves, C. et al. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 11, 751–758 (2010). https://doi.org/10.1038/ni.1904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing