Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of an IL7-R+c-Kithi myelolymphoid progenitor critically dependent on IFN-γ signaling during acute malaria

Abstract

Although the relationship between hematopoietic stem cells and progenitor populations has been investigated extensively under steady-state conditions, the dynamic response of the hematopoietic compartment during acute infection is largely unknown. Here we show that after infection of mice with Plasmodium chabaudi, a c-Kithi progenitor subset positive for interleukin 7 receptor-α (IL-7Rα) emerged that had both lymphoid and myeloid potential in vitro. After being transferred into uninfected alymphoid or malaria-infected hosts, IL-7Rα+c-Kithi progenitors generated mainly myeloid cells that contributed to the clearance of infected erythrocytes in infected hosts. The generation of these infection-induced progenitors was critically dependent on interferon-γ (IFN-γ) signaling in hematopoietic progenitors. Thus, IFN-γ is a key modulator of hematopoiesis and innate and adaptive immunity during acute malaria infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in bone marrow hematopoiesis during acute infection with P. chabaudi.
Figure 2: Transient emergence of LinIL-7Rα+c-Kithi progenitors during acute infection with P. chabaudi.
Figure 3: Infection-induced LinIL-7Rα+c-Kithi cells are bipotent myelolymphoid progenitors.
Figure 4: Infection-induced LinIL-7Rα+c-Kithi cells differentiate in vivo into functional myeloid cells.
Figure 5: Contribution of LinIL-7Rα+c-Kithi cells to the clearance of malaria-infected erythrocytes in vivo.
Figure 6: Generation of infection-induced LinIL-7Rα+c-Kithi cells in Myd88-, Trif-, Tlr9- and Ifngr1-null mutants.
Figure 7: Critical dependence of infection-induced LinIL-7Rα+c-Kithi cells on IFN-γ signaling.

Similar content being viewed by others

References

  1. Passegué, E., Wagers, A.J., Giuriato, S., Anderson, W.C. & Weissman, I.L. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202, 1599–1611 (2005).

    Article  PubMed Central  PubMed  Google Scholar 

  2. Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow LinSca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kiel, M.J., Yilmaz, O.H., Iwashita, T., Terhorst, C. & Morrison, S.J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Luc, S., Buza-Vidas, N. & Jacobsen, S.E. Delineating the cellular pathways of hematopoietic lineage commitment. Semin. Immunol. 20, 213–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Arinobu, Y. et al. Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1, 416–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Milne, C.D. & Paige, C.J. IL-7: a key regulator of B lymphopoiesis. Semin. Immunol. 18, 20–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Kondo, M. et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407, 383–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Langhorne, J., Ndungu, F.M., Sponaas, A.M. & Marsh, K. Immunity to malaria: more questions than answers. Nat. Immunol. 9, 725–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Stevenson, M.M. & Riley, E.M. Innate immunity to malaria. Nat. Rev. Immunol. 4, 169–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Villeval, J.L., Gearing, A. & Metcalf, D. Changes in hemopoietic and regulator levels in mice during fatal or nonfatal malarial infections. II. Nonerythroid populations. Exp. Parasitol. 71, 375–385 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Nagaoka, H., Gonzalez-Aseguinolaza, G., Tsuji, M. & Nussenzweig, M.C. Immunization and infection change the number of recombination activating gene (RAG)-expressing B cells in the periphery by altering immature lymphocyte production. J. Exp. Med. 191, 2113–2120 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhu, J. et al. A myeloid-lineage-specific enhancer upstream of the mouse myeloperoxidase (MPO) gene. Leukemia 8, 717–723 (1994).

    CAS  PubMed  Google Scholar 

  17. Zhang, P. et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 21, 853–863 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Villeval, J.L., Lew, A. & Metcalf, D. Changes in hemopoietic and regulator levels in mice during fatal or nonfatal malarial infections. I. Erythropoietic populations. Exp. Parasitol. 71, 364–374 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Yap, G.S. & Stevenson, M.M. Plasmodium chabaudi AS: erythropoietic responses during infection in resistant and susceptible mice. Exp. Parasitol. 75, 340–352 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Silverman, P.H., Schooley, J.C. & Mahlmann, L.J. Murine malaria decreases hemopoietic stem cells. Blood 69, 408–413 (1987).

    CAS  PubMed  Google Scholar 

  21. Asami, M., Owhashi, M., Abe, T. & Nawa, Y. A comparative study of the kinetic changes of hemopoietic stem cells in mice infected with lethal and non-lethal malaria. Int. J. Parasitol. 22, 43–47 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Serbina, N.V., Hohl, T.M., Cherny, M. & Pamer, E.G. Selective expansion of the monocytic lineage directed by bacterial infection. J. Immunol. 183, 1900–1910 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Ueda, Y., Yang, K., Foster, S.J., Kondo, M. & Kelsoe, G. Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression. J. Exp. Med. 199, 47–58 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ueda, Y., Cain, D.W., Kuraoka, M., Kondo, M. & Kelsoe, G. IL-1R type I-dependent hemopoietic stem cell proliferation is necessary for inflammatory granulopoiesis and reactive neutrophilia. J. Immunol. 182, 6477–6484 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Iida, S., Watanabe-Fukunaga, R., Nagata, S. & Fukunaga, R. Essential role of C/EBPα in G-CSF-induced transcriptional activation and chromatin modification of myeloid-specific genes. Genes Cells 13, 313–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Hsu, C.L. et al. Antagonistic effect of CCAAT enhancer-binding protein-α and Pax5 in myeloid or lymphoid lineage choice in common lymphoid progenitors. Proc. Natl. Acad. Sci. USA 103, 672–677 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Serbina, N.V. & Pamer, E.G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Tsou, C.L. et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117, 902–909 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Robben, P.M., LaRegina, M., Kuziel, W.A. & Sibley, L.D. Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis. J. Exp. Med. 201, 1761–1769 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sponaas, A.M. et al. Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria. Blood 114, 5522–5531 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Coban, C. et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201, 19–25 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Parroche, P. et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl. Acad. Sci. USA 104, 1919–1924 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Welner, R.S. et al. Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood 112, 3753–3761 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nagai, Y. et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24, 801–812 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Holmes, C. & Stanford, W.L. Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 25, 1339–1347 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Bradfute, S.B., Graubert, T.A. & Goodell, M.A. Roles of Sca-1 in hematopoietic stem/progenitor cell function. Exp. Hematol. 33, 836–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Young, H.A. & Hardy, K.J. Role of interferon-γ in immune cell regulation. J. Leukoc. Biol. 58, 373–381 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Meding, S.J., Cheng, S.C., Simon-Haarhaus, B. & Langhorne, J. Role of gamma interferon during infection with Plasmodium chabaudi chabaudi. Infect. Immun. 58, 3671–3678 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Su, Z. & Stevenson, M.M. Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infect. Immun. 68, 4399–4406 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Favre, N., Ryffel, B., Bordmann, G. & Rudin, W. The course of Plasmodium chabaudi chabaudi infections in interferon-γ receptor deficient mice. Parasite Immunol. 19, 375–383 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Li, C., Corraliza, I. & Langhorne, J. A defect in interleukin-10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect. Immun. 67, 4435–4442 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Flesch, I.E. et al. Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon γ and tumor necrosis factor α. J. Exp. Med. 181, 1615–1621 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the European Commission Framework Programme 6 Network of Excellence (BioMalPar LSHP-CT-2004-503578 to J.L. and MUGEN LSHG-CT-2005-005203 to A.J.P.) and the Medical Research Council UK (U117584248 to J.L. and U117569359 to A.J.P.).

Author information

Authors and Affiliations

Authors

Contributions

N.N.B. and D.E.B. did experiments, analyzed data and contributed to the writing of the manuscript; A.-I.G.D. and W.J. did experiments and provided advice; A.R. did the cell sorting; J.T. provided reagents; and J.L. and A.J.P. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Alexandre J Potocnik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Tables 1–4 (PDF 922 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyaev, N., Brown, D., Diaz, AI. et al. Induction of an IL7-R+c-Kithi myelolymphoid progenitor critically dependent on IFN-γ signaling during acute malaria. Nat Immunol 11, 477–485 (2010). https://doi.org/10.1038/ni.1869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing