Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PTEN functions to 'prioritize' chemotactic cues and prevent 'distraction' in migrating neutrophils

This article has been updated

Abstract

Neutrophils encounter and 'prioritize' many chemoattractants in their pursuit of bacteria. Here we tested the possibility that the phosphatase PTEN is responsible for the prioritization of chemoattractants. Neutrophils induced chemotaxis by two separate pathways, the phosphatidylinositol-3-OH kinase (PI(3)K) phosphatase and tensin homolog (PTEN) pathway, and the p38 mitogen-activated protein kinase pathway, with the p38 pathway dominating over the PI(3)K pathway. Pten−/− neutrophils could not prioritize chemoattractants and were 'distracted' by chemokines when moving toward bacterial chemoattractants. In opposing gradients, PTEN became distributed throughout the cell circumference, which inhibited all PI(3)K activity, thus permitting 'preferential' migration toward bacterial products via phospholipase A2 and p38. Such prioritization was defective in Pten−/− neutrophils, which resulted in defective bacterial clearance in vivo. Our data identify a PTEN-dependent mechanism in neutrophils to prioritize, 'triage' and integrate responses to multiple chemotactic cues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Function of PI(3)K and p38 in mediating the chemotaxis of mouse neutrophils to single and opposing gradients of chemoattractants.
Figure 2: Localization of PTEN and PtdIns(3,4,5)P3 in human neutrophils migrating to single gradients of fMLP or CXCL8.
Figure 3: Localization of PTEN and PtdIns(3,4,5)P3 in human neutrophils migrating in opposing gradients of fMLP and CXCL8.
Figure 4: Effect of PTEN deficiency on chemotaxis to a single gradient.
Figure 5: Function of PTEN in preventing distraction and regulating PI(3)K during chemotaxis to end-target chemoattractants.
Figure 6: Function of PTEN in mediating in vivo inflammatory responses.
Figure 7: Function of PTEN in regulating the extent of joint inflammation and neutrophil accumulation in an in vivo model of inflammatory arthritis.

Similar content being viewed by others

Change history

  • 21 July 2008

    In the version of this article initially published, phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) is incorrectly identified as phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2). The error has been corrected in the HTML and PDF versions of the article.

References

  1. Jin, T., Zhang, N., Long, Y., Parent, C.A. & Devreotes, P.N. Localization of the G protein βγ complex in living cells during chemotaxis. Science 287, 1034–1036 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R.A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, L. et al. Two phases of actin polymerization display different dependencies on PI(3,4,5)P3 accumulation and have unique roles during chemotaxis. Mol. Biol. Cell 14, 5028–5037 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun, R. et al. Protein kinase C ζ is required for epidermal growth factor-induced chemotaxis of human breast cancer cells. Cancer Res. 65, 1433–1441 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Ptasznik, A. et al. A tyrosine kinase signaling pathway accounts for the majority of phosphatidylinositol 3,4,5-trisphosphate formation in chemoattractant-stimulated human neutrophils. J. Biol. Chem. 271, 25204–25207 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Stephens, L., Ellson, C. & Hawkins, P. Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr. Opin. Cell Biol. 14, 203–213 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Huang, Y.E. et al. Receptor-mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells. Mol. Biol. Cell 14, 1913–1922 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferreira, A.M., Isaacs, H., Hayflick, J.S., Rogers, K.A. & Sandig, M. The p110δ isoform of PI3K differentially regulates β1 and β2 integrin-mediated monocyte adhesion and spreading and modulates diapedesis. Microcirculation 13, 439–456 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Sasaki, A.T. & Firtel, R.A. Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Eur. J. Cell Biol. 85, 873–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, L., Puri, K.D., Penninger, J.M. & Kubes, P. Leukocyte PI3Kγ and PI3Kδ have temporally distinct roles for leukocyte recruitment in vivo. Blood 110, 1191–1198 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287, 1049–1053 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Heit, B., Liu, L., Colarusso, P., Puri, K.D. & Kubes, P. PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J. Cell Sci. 121, 205–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Maehama, T. & Dixon, J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, Y. et al. A requirement of MAPKAPK2 in the uropod localization of PTEN during FMLP-induced neutrophil chemotaxis. Biochem. Biophys. Res. Commun. 316, 666–672 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Z. et al. Regulation of PTEN by Rho small GTPases. Nat. Cell Biol. 7, 399–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Nishio, M. et al. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat. Cell Biol. 9, 36–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Subramanian, K.K. et al. Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood 109, 4028–4037 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Damen, J.E. et al. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl. Acad. Sci. USA 93, 1689–1693 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murdoch, C. & Finn, A. Chemokine receptors and their role in inflammation and infectious diseases. Blood 95, 3032–3043 (2000).

    CAS  PubMed  Google Scholar 

  21. Foxman, E.F., Campbell, J.J. & Butcher, E.C. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J. Cell Biol. 139, 1349–1360 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heit, B., Tavener, S., Raharjo, E. & Kubes, P. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol. 159, 91–102 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Foxman, E.F., Kunkel, E.J. & Butcher, E.C. Integrating conflicting chemotactic signals. The role of memory in leukocyte navigation. J. Cell Biol. 147, 577–588 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khan, A.I., Heit, B., Andonegui, G., Colarusso, P. & Kubes, P. Lipopolysaccharide: a p38 MAPK-dependent disrupter of neutrophil chemotaxis. Microcirculation 12, 421–432 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, L. et al. PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev. Cell 12, 603–614 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bae, Y.S. et al. Differential signaling of formyl peptide receptor-like 1 by Trp-Lys-Tyr-Met-Val-Met-CONH2 or lipoxin A4 in human neutrophils. Mol. Pharmacol. 64, 721–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, J.O. et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99, 323–334 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Marino, S. et al. PTEN is essential for cell migration but not for fate determination and tumourigenesis in the cerebellum. Development 129, 3513–3522 (2002).

    CAS  PubMed  Google Scholar 

  29. Tkalcevic, J. et al. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity 12, 201–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Ditzel, H.J. The K/BxN mouse: a model of human inflammatory arthritis. Trends Mol. Med. 10, 40–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Kouskoff, V. et al. Organ-specific disease provoked by systemic autoimmunity. Cell 87, 811–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Maccioni, M. et al. Arthritogenic monoclonal antibodies from K/BxN mice. J. Exp. Med. 195, 1071–1077 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weljie, A.M., Dowlatabadi, R., Miller, B.J., Vogel, H.J. & Jirik, F.R. An inflammatory arthritis-associated metabolite biomarker pattern revealed by 1H NMR spectroscopy. J. Proteome Res. 6, 3456–3464 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Solomon, S. et al. Transmission of antibody-induced arthritis is independent of complement component 4 (C4) and the complement receptors 1 and 2 (CD21/35). Eur. J. Immunol. 32, 644–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Herbert, D.R. et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20, 623–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Hagenbeek, T.J. et al. The loss of PTEN allows TCR αβ lineage thymocytes to bypass IL-7 and pre-TCR-mediated signaling. J. Exp. Med. 200, 883–894 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Georgel, P. et al. A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with gram-positive bacteria. Infect. Immun. 73, 4512–4521 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Benoist (Harvard Medical School) for the KRN mouse line; T.W. Mak (University Health Network) for the loxP-flanked Pten mouse line; and M. Gaestel (Martin Luther University) for the MK2-deficient mice. Supported by the Canadian Institutes of Health Research (P.K.), the Arthritis Society of Canada (F.R.J.), the Alberta Heritage Foundation for Medical Research (P.K.), the Canada Research Chairs Program (P.K. and F.R.J.) and the Calvin, Phoebe and Joan Snyder Chair in Critical Care Research (P.K.).

Author information

Authors and Affiliations

Authors

Contributions

B.H. did all experiments unless otherwise noted; C.D., B.J.M. and F.R.J. did the arthritis modeling and managed the bioimaging facility; S.R. provided molecular biology expertise and technical input; Z.G. did all p38 blotting; P.C. managed the imaging facility and aided in the development of the imaging assays; P.K. managed the study, and all experiments except the arthritis model were done in the laboratory of P.K.; and B.H. and P.K. prepared the manuscript with input from the other authors.

Corresponding author

Correspondence to Paul Kubes.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Methods (PDF 3347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heit, B., Robbins, S., Downey, C. et al. PTEN functions to 'prioritize' chemotactic cues and prevent 'distraction' in migrating neutrophils. Nat Immunol 9, 743–752 (2008). https://doi.org/10.1038/ni.1623

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1623

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing