Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Insights into deep carbon derived from noble gases

Abstract

Science and society are faced with two challenges that are inextricably linked: fossil-fuel energy dependence and rising levels of atmospheric carbon dioxide. Management of remaining hydrocarbon resources, the search for cleaner fuels and increasing interest in subsurface carbon storage all require a better understanding of the deep terrestrial carbon cycle. The coupling of noble gas and carbon chemistry provides an innovative approach to understanding this deep carbon. Whereas carbon geochemistry and isotopic signatures record the history of inorganic and organic reactions that control carbon mobility, the inert noble gases provide unique tracers of fluid origin, transport and age. Together, they have been used to show that groundwater has a key role as both the sink for geologically sequestered carbon dioxide, and in the transport and emplacement of hydrocarbon gas deposits. Furthermore, these tracers have also been used to show that groundwater and subsurface microbiology jointly influence the formation and alteration of fossil-fuel deposits to an extent not previously recognized. The age and distribution of groundwater in fractures in the Earth's crust exert important controls on the Earth's deepest microbial communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic showing that noble gases in any subsurface fluid are derived from three sources: the atmosphere, crust and mantle (see Box 1).
Figure 2: Combined noble gas and stable isotopes distinguish between and quantify different mechanisms of CO2 removal from natural CO2 gas deposits.
Figure 3: Principles used to quantify methane generation through microbial biodegradation of coal by integrating noble gas tracers.

Similar content being viewed by others

References

  1. Gilfillan, S. M. et al. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochim. Cosmochim. Acta 72, 1174–1198 (2008).

    Article  Google Scholar 

  2. Gilfillan, S. M. et al. Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458, 614–618 (2009).

    Article  Google Scholar 

  3. Oxburgh, E. R., O'Nions, R. K. & Hill, R. I. Helium isotopes in sedimentary basins. Nature 324, 632–635 (1986).

    Article  Google Scholar 

  4. Marty, B., O'Nions, R. K., Oxburgh, E. R., Martel, D. & Lombardi, S. Helium isotopes in alpine regions. Tectonophysics 206, 71–78 (1992).

    Article  Google Scholar 

  5. Kennedy, B. M. & van Soest, M. C. Flow of mantle fluids through the ductile lower crust: Helium isotope trends. Science 318, 1433–1436 (2007).

    Article  Google Scholar 

  6. Griesshaber, E., O'Nions, R. K. & Oxburgh, E. R. Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, F. R. G. Chem. Geol. 99, 213–235 (1992).

    Article  Google Scholar 

  7. Sherwood Lollar, B., Ballentine, C. J. & O'Nions, R. K. The fate of mantle-derived carbon in a continental sedimentary basin: Integration of C/He relationships and stable isotope signatures. Geochim. Cosmochim. Acta 61, 2295–2307 (1997).

    Article  Google Scholar 

  8. Marty, B. & Tolstikhin, I. N. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol. 145, 233–248 (1998).

    Article  Google Scholar 

  9. Ballentine, C. J., Schoell, M., Coleman, D. & Cain, B. A. 300-Myr-old magmatic CO2 in natural gas reservoirs of the west Texas Permian Basin. Nature 409, 327–331 (2001).

    Article  Google Scholar 

  10. de Leeuw, G. A. M., Hilton, D. R., Fischer, T. P. & Walker, J. A. The He-CO2 isotope and relative abundance characteristics of geothermal fluids in El Salvador and Honduras: New constraints on volatile mass balance of the Central American Volcanic Arc. Earth Planet. Sci. Lett. 258, 132–146 (2007).

    Article  Google Scholar 

  11. Toth, J. Cross formational gravity-flow of groundwater: a mechanism of transport and accumulation of petroleum. AAPG Stud. Geol. 10, 121–167 (1980).

    Google Scholar 

  12. Ballentine, C. J., O'Nions, R. K., Oxburgh, E. R., Horvath, F. & Deak, J. Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet. Sci. Lett. 105, 229–246 (1991).

    Article  Google Scholar 

  13. Zartman, R. E., Reynolds, J. H. & Wasserburg, G. J. Helium, argon, and carbon in some natural gases. J. Geophys. Res. 66, 277–306 (1961).

    Article  Google Scholar 

  14. Bosch, A. & Mazor, E. Natural gas association with water and oil as depicted by atmospheric noble gases: case studies from the southeastern Mediterranean Coastal Plain. Earth Planet. Sci. Lett. 87, 338–346 (1988).

    Article  Google Scholar 

  15. Ballentine, C. J. & Sherwood Lollar, B. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. Geochim. Cosmochim. Acta 66, 2483–2497 (2002).

    Article  Google Scholar 

  16. Pinti, D. L. & Marty, B. Noble gases in crude oils from the Paris basin, France — Implications for the origin of fluids and constraints on oil-water-gas interactions. Geochim. Cosmochim. Acta 59, 3389–3404 (1995).

    Article  Google Scholar 

  17. Ballentine, C. J., O'Nions, R. K. & Coleman, M. L. A Magnus opus: Helium, neon, and argon isotopes in a North Sea oilfield. Geochim. Cosmochim. Acta 60, 831–849 (1996).

    Article  Google Scholar 

  18. Torgersen, T. & Kennedy, B. M. Air-Xe enrichments in Elk Hills oil field gases: Role of water in migration and storage. Earth Planet. Sci. Lett. 167, 239–253 (1999).

    Article  Google Scholar 

  19. Head, I. M., Jones, D. M. & Larter, A. R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344–352 (2003).

    Article  Google Scholar 

  20. Jones, D. M. et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451, 176–181 (2008).

    Article  Google Scholar 

  21. Zhou, Z. & Ballentine, C. J. He-4 dating of groundwater associated with hydrocarbon reservoirs. Chem. Geol. 226, 309–327 (2006).

    Article  Google Scholar 

  22. Zhou, Z., Ballentine, C. J., Kipfer, R., Schoell, M. & Thibodeaux, S. Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA. Geochim. Cosmochim. Acta 69, 5413–5428 (2005).

    Article  Google Scholar 

  23. Torgersen, T. & Clarke, W. B. Helium accumulation in groundwater I. An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim. Cosmochim. Acta 49, 1211–1218 (1985).

    Article  Google Scholar 

  24. Wilhelms, A. et al. Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411, 1034–1037 (2001).

    Article  Google Scholar 

  25. Jannasch, H. W. The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents. Proc. R. Soc. Lond. B 225, 277–297 (1985).

    Article  Google Scholar 

  26. Shock, E. L. & Schulte, M. D. Organic synthesis during fluid mixing in hydrothermal systems. J.Geophys. Res. 103, 28513–28527 (1998).

    Article  Google Scholar 

  27. Kelley, D. S. et al. A serpentinite-hosted ecosystem: The lost city hydrothermal field. Science 307, 1428–1434 (2005).

    Article  Google Scholar 

  28. Chapelle, F. H. et al. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315 (2002).

    Article  Google Scholar 

  29. Spear, J. R., Walker, J. L., McCollom, T. M. & Pace, N. R. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. Natl Acad. Sci. USA 102, 2555–2560 (2005).

    Article  Google Scholar 

  30. Pedersen, K. Exploration of deep intraterrestrial microbial life: Current perspectives. FEMS Microbiol. Lett. 185, 9–16 (2000).

    Article  Google Scholar 

  31. Lin, L.-H. et al. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479–482 (2006).

    Article  Google Scholar 

  32. Sherwood Lollar, B. et al. Evidence for bacterially generated hydrocarbon gas in Canadian Shield and Fennoscandian Shield rocks. Geochim. Cosmochim. Acta 57, 5073–5085 (1993).

    Article  Google Scholar 

  33. Lippmann, J. et al. Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochim. Cosmochim. Acta 67, 4597–4619 (2003).

    Article  Google Scholar 

  34. Sherwood Lollar, B. et al. Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons. Geochim. Cosmochim. Acta 72, 4778–4795 (2008).

    Article  Google Scholar 

  35. Chivian, D. et al. Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322, 275–278 (2008).

    Article  Google Scholar 

  36. Pedersen, K. & Ekendahl, S. Incorporation of CO2 and introduced organic compounds by bacterial populations in groundwater from the deep crystalline bedrock of the Stripa mine. J. Gen. Microbiol. 138, 369–376 (1992).

    Article  Google Scholar 

  37. Pedersen, K. Microbial life in deep granitic rock. FEMS Microbiol. Rev. 20, 399–414 (1997).

    Article  Google Scholar 

  38. Lin, L. H. et al. Planktonic microbial communities associated with fracture-derived groundwater in a deep gold mine of South Africa. Geomicrobiol. J. 23, 475–497 (2006).

    Article  Google Scholar 

  39. Onstott, T. C. et al. The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa. Geomicrobiol. J. 23, 369–414 (2006).

    Article  Google Scholar 

  40. Ward, J. A. et al. Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: Implications for the deep biosphere. Geochim. Cosmochim. Acta 68, 3239–3250 (2004).

    Article  Google Scholar 

  41. Ballentine, C. J., Burgess, R. & Marty, B. Tracing fluid origin, transport and interaction in the crust. Rev. Mineral. Geochem. 47, 539–614 (2002).

    Article  Google Scholar 

  42. Andrews, J. N. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem. Geol. 49, 339–351 (1985).

    Article  Google Scholar 

  43. Kipfer, R., Aeschbach-Hertig, W., Peeters, F. & Stute, M. Noble gases in lakes and ground waters. Rev. Mineral. Geochem. 47, 615–700 (2002).

    Article  Google Scholar 

  44. Andrews, J. N. & Lee, D. J. Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and paleoclimatic trends. J. Hydrol. 41, 233–252 (1979).

    Article  Google Scholar 

  45. Heaton, T. H. E. & Vogel, J. C. 'Excess air' in groundwater. J. Hydrol. 50, 201–216 (1981).

    Article  Google Scholar 

  46. Stute, M., Schlosser, P., Clark, J. F. & Broecker, W. S. Paleotemperatures in the southwestern United States derived from noble gases in ground water. Science 256, 1000–1003 (1992).

    Article  Google Scholar 

  47. Ballentine, C. J. & Hall, C. M. Determining paleotemperature and other variables by using an error-weighted, nonlinear inversion of noble gas concentrations in water. Geochim. Cosmochim. Acta 63, 2315–2336 (1999).

    Article  Google Scholar 

  48. Aeschbach-Hertig, W., Peeters, F., Beyerle, U. & Kipfer, R. Interpretation of dissolved atmospheric noble gases in natural waters. Wat. Resour. Res. 35, 2779–2792 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We express our thanks to all the many colleagues and co-workers whose scientific research and insightful advances in the use of noble gas geochemistry and carbon geochemistry informed the developments highlighted in this article.

Author information

Authors and Affiliations

Authors

Contributions

B.S.L. and C.J.B. jointly conceived and wrote the paper.

Corresponding authors

Correspondence to B. Sherwood Lollar or C. J. Ballentine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lollar, B., Ballentine, C. Insights into deep carbon derived from noble gases. Nature Geosci 2, 543–547 (2009). https://doi.org/10.1038/ngeo588

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing