Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid downward transport of the neurotoxin domoic acid in coastal waters

Abstract

Toxic phytoplankton blooms threaten coastlines worldwide by diminishing beach quality and adversely affecting marine ecosystems and human health1,2. The common diatom genus Pseudo-nitzschia consists of several species known to produce the neurotoxin domoic acid3. Recent studies suggest that algal blooms dominated by Pseudo-nitzschia are increasing in frequency and duration owing to changes in coastal nutrient regimes1,4,5. However, few studies have examined the persistence or long-term biogeochemical cycling of domoic acid in marine waters6,7,8. Here, we measure the concentration of domoic acid in surface waters and sediment traps—up to 800 m in depth—off the coast of Southern California. We show that peaks in Pseudo-nitzschia abundance and domoic acid concentrations in surface waters coincide with peaks in diatom and toxin abundance at depth, suggesting rapid downward transport of the toxin. In some cases, the sinking particles contain over five times the United States federal limit of domoic acid. Detection of domoic acid in bottom sediments indicates that the toxin may persist long after the Pseudo-nitzschia blooms. Our results indicate that vertical fluxes of domoic acid are a substantial source of the toxin to deep-ocean food webs, and could explain high levels of domoic acid previously observed in benthic organisms9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Santa Barbara Basin (SBB) and San Pedro Basin (SPB) sampling sites.
Figure 2: Domoic acid and Pseudo-nitzschia cell measurements in sediment-trap material and surface waters of Santa Barbara Basin.
Figure 3: Domoic acid in sediment-trap material and surface waters of San Pedro Basin.
Figure 4: Comparison of Pseudo-nitzschia bloom and non-bloom events.

Similar content being viewed by others

References

  1. Anderson, D. M., Glibert, P. M. & Burkholder, J. M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25, 704–726 (2002).

    Article  Google Scholar 

  2. Hoagland, P., Anderson, D. M., Kaoru, Y. & White, A. W. The economic effects of harmful algal blooms in the United States: Estimates, assessment issues, and information needs. Estuaries 25, 819–837 (2002).

    Article  Google Scholar 

  3. Trainer, V. L., Hickey, B. & Bates, S. S. in Oceans and Human Health: Risks and Remedies from the Sea (eds Smith, S. L., Walsh, P. J., Fleming, L. E., Solo-Gabriele, H. & Gerwick, W. H.) 219–237 (Elsevier Science, 2008).

    Google Scholar 

  4. Dortch, Q. et al. Abundance and vertical flux of Pseudo-nitzschia in the northern Gulf of Mexico. Mar. Ecol. 146, 249–264 (1997).

    Article  Google Scholar 

  5. Parsons, M. L., Dortch, Q. & Turner, R. E. Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnol. Oceanogr. 47, 551–558 (2002).

    Article  Google Scholar 

  6. Fisher, J. M. et al. Role of Fe(III), phosphate, dissolved organic matter, and nitrate during the photodegradation of domoic acid in the marine environment. Environ. Sci. Technol. 40, 2200–2205 (2006).

    Article  Google Scholar 

  7. Bouillon, R. C. et al. Photodegradation of the algal toxin domoic acid in natural water matrices. Limnol. Oceanogr. 51, 321–330 (2006).

    Article  Google Scholar 

  8. Bouillon, R. C., Kieber, R. J., Skrabal, S. A. & Wright, J. L. C. Photochemistry and identification of photodegradation products of the marine toxin domoic acid. Mar. Chem. 110, 18–27 (2008).

    Article  Google Scholar 

  9. Lefebvre, K. A., Bargu, S., Kieckhefer, T. & Silver, M. W. From sanddabs to blue whales: The pervasiveness of domoic acid. Toxicon 40, 971–977 (2002).

    Article  Google Scholar 

  10. Vigilant, V. L. & Silver, M. W. Domoic acid in benthic flatfish on the continental shelf of Monterey Bay, California, USA. Mar. Biol. 151, 2053–2062 (2007).

    Article  Google Scholar 

  11. Fritz, L. et al. An outbreak of domoic acid poisoning attributed to the pennate diatom Pseudonitzschia australis. J. Phycol. 28, 439–442 (1992).

    Article  Google Scholar 

  12. Scholin, C. A. et al. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403, 80–84 (2000).

    Article  Google Scholar 

  13. Silvagni, P. A. et al. Pathology of domoic acid toxicity in California sea lions (Zalophus californianus). Vet. Pathol. 42, 184–191 (2005).

    Article  Google Scholar 

  14. Perl, T. M. et al. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. New Engl. J. Med. 322, 1775–1780 (1990).

    Article  Google Scholar 

  15. Schnetzer, A. et al. Blooms of Pseudo-nitzschia and domoic acid in the San Pedro Channel and Los Angeles harbor areas of the Southern California Bight, 2003–2004. Harmful Algae 6, 372–387 (2007).

    Article  Google Scholar 

  16. Buck, K. R. et al. Autecology of the diatom Pseudo-nitzschia australis, a domoic acid producer, from Monterey Bay, California. Mar. Ecol. 84, 293–302 (1992).

    Article  Google Scholar 

  17. Maldonado, M. T., Hughes, M. P., Rue, E. L. & Wells, M. L. The effect of Fe and Cu on growth and domoic acid production by Pseudo-nitzschia multiseries and Pseudo-nitzschia australis. Limnol. Oceanogr. 47, 515–526 (2002).

    Article  Google Scholar 

  18. Kvitek, R. G., Goldberg, J. D., Smith, G. J., Doucette, G. J. & Silver, M. W. Domoic acid contamination within eight representative species from the benthic food web of Monterey Bay, California. Mar. Ecol. 367, 35–47 (2008).

    Article  Google Scholar 

  19. Vale, P. & Sampayo, M. A. Domoic acid in Portuguese shellfish and fish. Toxicon 39, 893–904 (2001).

    Article  Google Scholar 

  20. Costa, P. R., Rodrigues, S. M., Botelho, M. J. & Sampayo, M. A. A potential vector of domoic acid: The swimming crab Polybius henslowii Leach (Decapoda-brachyura). Toxicon 42, 135–141 (2003).

    Article  Google Scholar 

  21. Burns, J. M. & Ferry, J. L. Adsorption of domoic acid to marine sediments and clays. J. Environ. Monitoring 9, 1373–1377 (2007).

    Article  Google Scholar 

  22. Anderson, C. R., Siegel, D. A., Kudela, R. M. & Brzezinski, M. A. Empirical models of toxigenic Pseudo-nitzschia blooms: Potential use as a remote detection tool in the Santa Barbara Channel. Harmful Algae 8, 478–492 (2009).

    Article  Google Scholar 

  23. Alldredge, A. L. & Gotschalk, C. C. Direct observation of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates. Deep Sea-Res. I 36, 159–171 (1989).

    Article  Google Scholar 

  24. Thunell, R. et al. Particulate organic carbon fluxes along upwelling-dominated continental margins: Rates and mechanisms. Glob. Biogeochem. Cycles 21, GB1002 (2007).

    Article  Google Scholar 

  25. Lail, E. M. et al. The role of particles on the biogeochemical cycling of domoic acid and its isomers in natural water matrices. Harmful Algae 6, 651–657 (2007).

    Article  Google Scholar 

  26. Hampson, D. R. et al. Interaction of domoic acid and several derivatives with kainic acid and ampa binding-sites in rat-brain. Eur. J. Pharmacol. 218, 1–8 (1992).

    Article  Google Scholar 

  27. Anderson, C. R., Brzezinski, M. A., Washburn, L. & Kudela, R. Circulation and environmental conditions during a toxigenic Pseudo-nitzschia australis bloom in the Santa Barbara Channel, California. Mar. Ecol. 327, 119–133 (2006).

    Article  Google Scholar 

  28. Rines, J. E. B. et al. Thin layers and camouflage: Hidden Pseudo-nitzschia spp. (Bacillariophyceae) populations in a fjord in the San Juan Islands, Washington, USA. Mar. Ecol. 225, 123–137 (2002).

    Article  Google Scholar 

  29. Hasle, G. R. in Phytoplankton Manual (ed. Sournia, A.) 88–96 (UNESCO, 1978).

    Google Scholar 

Download references

Acknowledgements

We thank A. Michaels and D. Capone for the use of the SPB sediment traps; D. Hammond for help in processing SPB sediment-trap samples; E. Tappa for his help in deployments and recoveries of the SBB trap; N. Guillocheau and the Channel Islands National Marine Sanctuary for help with SBB water collections; R. Kudela for providing laboratory facilities for Pseudo-nitzschia and DA analyses of surface SBB water samples and J. Gully, C. Tang and the Los Angeles County Sanitation Districts for providing sediment core samples. This work was supported by NSF OCE 0351169 and OCE 0850425, EPA RD-83170501, NOAA NA160P2790, NOAA Sea Grant NA06OAR4170012 and NASA NNX08AG82G.

Author information

Authors and Affiliations

Authors

Contributions

E.S.-W., A.S. and C.R.B.-N. measured DA concentrations, conducted Pseudo-nitzschia cell counts and handled data interpretation for the SBB and SPB datasets. J.M.B. and J.L.F. helped in the development of the LC-MS/MS method for SBB. S.L.M. provided SEM images. C.A. provided surface DA and Pseudo-nitzschia cell concentrations for SBB. E.F. measured DA with ELISA kits on SPB samples. R.S. and I.C. assisted sampling collection throughout the covered time period in the SPB area. R.T. and W.M.B. provided sediment-trap samples in SBB and SPB, respectively. D.A.C., B.H.J., P.E.M. and D.A.S. provided support and infrastructure for the SPB Pseudo-nitzschia and DA measurements.

Corresponding author

Correspondence to Claudia R. Benitez-Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekula-Wood, E., Schnetzer, A., Benitez-Nelson, C. et al. Rapid downward transport of the neurotoxin domoic acid in coastal waters. Nature Geosci 2, 272–275 (2009). https://doi.org/10.1038/ngeo472

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo472

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing