Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biomolecule formation by oceanic impacts on early Earth

Abstract

Intense impacts of extraterrestrial objects melted the embryonic Earth, forming an inorganic body with a carbon-dioxide- and nitrogen-rich atmosphere1,2. Certain simple organic molecules have been shown to form under conditions resembling meteorite impacts, although the link between these events and the development of more complex molecules remains unclear3. Ordinary chondrites, the most common type of meteorite, contain solid carbon, iron and nickel—elements essential to the formation of organic chemicals4,5. Here we use shock experiments to recreate the conditions surrounding the impact of chondritic meteorites into an early ocean. We used a propellant gun to create a high-velocity impact into a mixture of solid carbon, iron, nickel, water and nitrogen. After the impact, we recovered numerous organic molecules, including fatty acids, amines and an amino acid. We suggest that organic molecules on the early Earth may have arisen from such impact syntheses. As the natural impacts that were frequent on the early Earth are more sustained and reach higher pressures than our experiments6,7, they may have resulted in the synthesis of a greater abundance, variety and complexity of organic compounds.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TIC and respective mass spectra of carboxylic acids for SA007.
Figure 2: TICs, m/z=201–221 and respective mass spectra of amines for a standard test solution, SA004 and SA007.
Figure 3: Comparison of respective selected-ion chromatographs of derivatized standard glycine and SA004 for m/z=246, 247 and 248.

Similar content being viewed by others

References

  1. Ohmoto, H., Watanabe, Y., Ikemi, H., Poulson, S. R. & Taylor, B. E. Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442, 908–911 (2006).

    Article  Google Scholar 

  2. Kasting, J. F. & Howard, M. T. Atmospheric composition and climate on the early Earth. Phil. Trans. R. Soc. Lond. B 361, 1733–1742 (2006).

    Article  Google Scholar 

  3. Mukhin, L. M., Gerasimov, M. V. & Safonova, E. N. Origin of precursors of organic molecules during evaporation of meteorites and mafic terrestrial rocks. Nature 340, 46–48 (1989).

    Article  Google Scholar 

  4. Larimer, J. W. & Wasson, T. J. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 416–435 (The Univ. Arizona Press, 1988).

    Google Scholar 

  5. Wasson, J. T. & Kallemeyn, G. W. Compositions of chondrites. Phil. Trans. R. Soc. Lond. A 325, 535–544 (1988).

    Article  Google Scholar 

  6. Culler, T. S., Becker, T. A., Muller, R. A. & Renne, P. R. Lunar impact history from 40Ar/39Ar dating of glass spherules. Science 287, 1785–1788 (2000).

    Article  Google Scholar 

  7. Valley, J. W., Peck, W. H., King, E. M. & Wilde, S. A. A cool early Earth. Geology 30, 351–354 (2002).

    Article  Google Scholar 

  8. Miller, S. L. A production of amino acids under possible primitive Earth conditions. Science 117, 528–529 (1953).

    Article  Google Scholar 

  9. Miller, S. L. & Orgel, L. G. The Origin of Life on the Earth (Prentice-Hall, 1974).

    Google Scholar 

  10. Bar-Nun, A., Bar-Nun, N., Bauer, S. H. & Sagan, C. Shock synthesis of amino acids in simulated primitive environments. Science 168, 470–473 (1970).

    Article  Google Scholar 

  11. Schlesinger, G. & Miller, S. L. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2 . J. Mol. Evol. 19, 376–382 (1983).

    Article  Google Scholar 

  12. Mckay, C. P. & Borucki, W. J. Organic synthesis in experimental impact shocks. Science 276, 390–392 (1997).

    Article  Google Scholar 

  13. Wetherill, G. W. Occurrence of giant impacts during the growth of the terrestrial planets. Science 228, 877–879 (1985).

    Article  Google Scholar 

  14. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    Article  Google Scholar 

  15. Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283, 674–676 (1999).

    Article  Google Scholar 

  16. Norton, O. R. in The Cambridge Encyclopedia of Meteorites (ed. Norton, O. R.) 331–340 (Cambridge Univ. Press, 2002).

    Google Scholar 

  17. Nakazawa, H. Origin of Life Scenario Written by the Earth 113–160 (Shin-Nihon Shuppan Ltd, 2006).

    Google Scholar 

  18. Nakazawa, H. Proc. Int. Symp. The Origin and Evolution of Natural Diversity 13–19 (2008).

    Google Scholar 

  19. Nakazawa, H., Sekine, T., Kakegawa, T. & Nakazawa, S. High yield shock synthesis of ammonia from iron, water and nitrogen available on the early Earth. Earth Planet. Sci. Lett. 235, 356–360 (2005).

    Article  Google Scholar 

  20. Kasting, J. K. Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere. Orig. Life Evol. Biosph. 20, 199–231 (1990).

    Article  Google Scholar 

  21. Sekine, T. Shock wave chemical synthesis. Eur. J. Solid State Inorg. Chem. 34, 823–833 (1997).

    Google Scholar 

  22. Furukawa, Y., Nakazawa, H., Sekine, T. & Kakegawa, T. Formation of ultrafine particles from impact-generated supercritical water. Earth Planet. Sci. Lett. 258, 543–549 (2007).

    Article  Google Scholar 

  23. Cronin, J. R. & Moore, C. B. Amino acid analyses of the Murchison, Murray and Allende carbonaceous chondrites. Science 172, 1327–1329 (1971).

    Article  Google Scholar 

  24. Bernstein, M. P., Dworkin, J. P., Sandford, S. A., Cooper, G. W. & Allamandola, L. J. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416, 401–403 (2001).

    Article  Google Scholar 

  25. Peterson, E., Horz, F. & Chang, S. Modification of amino acids at shock pressures of 3.5 to 32 GPa. Geochim. Cosmochim. Acta 61, 3937–3950 (1997).

    Article  Google Scholar 

  26. Ross, D. S. Cometary impact and amino acid survival—chemical kinetics and thermochemistry. J. Phys. Chem. A 110, 6633–6637 (2006).

    Article  Google Scholar 

  27. Robert, F., Gautier, D. & Dubrulle, B. The solar system D/H ratio: Observations and theories. Space Sci. Rev. 92, 201–224 (2000).

    Article  Google Scholar 

  28. Huber, C. & Wächtershäuser, G. α-hydroxy and α-amino acids under possible hadean, volcanic origin-of-life conditions. Science 314, 630–632 (2006).

    Article  Google Scholar 

  29. Bada, J. L. et al. Debating evidence for the origin of life on Earth. Science 315, 937–939 (2007).

    Article  Google Scholar 

  30. Ohara, S., Kakegawa, T. & Nakazawa, H. Pressure effects on the abiotic polymerization of glycine. Orig. Life Evol. Biosph. 37, 215–223 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Taniguchi, NIMS, for cleaning of 13C-amorphous carbon, E. Ohtani for critical reading of the manuscript, S. Ohara, Tohoku University, for various discussions and J. Hill, NIMS, for assistance during preparation of the manuscript. Y.F. is a research fellow of the Japan Society for the Promotion of Science (JSPS). This study was supported by JSPS grants (18204049, 19654083 and 18204051).

Author information

Authors and Affiliations

Authors

Contributions

H.N. proposed the impact synthesis hypothesis and conducted this study. Y.F. and T.S. carried out the shock recovery experiments. Y.F. extracted organic compounds and analysed amines and amino acids using LC–MS. M.O. and Y.F. analysed carboxylic acids using GC–MS. Y.F. and H.N. prepared an earlier manuscript. All authors discussed and prepared the final manuscript.

Corresponding author

Correspondence to Yoshihiro Furukawa.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information (PDF 290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, Y., Sekine, T., Oba, M. et al. Biomolecule formation by oceanic impacts on early Earth. Nature Geosci 2, 62–66 (2009). https://doi.org/10.1038/ngeo383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing