Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decadal soil carbon accumulation across Tibetan permafrost regions

Abstract

Permafrost soils store large amounts of carbon. Warming can result in carbon release from thawing permafrost, but it can also lead to enhanced primary production, which can increase soil carbon stocks. The balance of these fluxes determines the nature of the permafrost feedback to warming. Here we assessed decadal changes in soil organic carbon stocks in the active layer—the uppermost 30 cm—of permafrost soils across Tibetan alpine regions, based on repeated soil carbon measurements in the early 2000s and 2010s at the same sites. We observed an overall accumulation of soil organic carbon irrespective of vegetation type, with a mean rate of 28.0 g C m−2 yr−1 across Tibetan permafrost regions. This soil organic carbon accrual occurred only in the subsurface soil, between depths of 10 and 30 cm, mainly induced by an increase of soil organic carbon concentrations. We conclude that the upper active layer of Tibetan alpine permafrost currently represents a substantial regional soil carbon sink in a warming climate, implying that carbon losses of deeper and older permafrost carbon might be offset by increases in upper-active-layer soil organic carbon stocks, which probably results from enhanced vegetation growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in soil organic carbon density (ΔSOCD) at 0–30 cm depth from the 2000s to 2010s across Tibetan permafrost regions.
Figure 2: Changes in soil organic carbon density (ΔSOCD) at different soil depths from the 2000s to 2010s across Tibetan permafrost regions.
Figure 3: Changes in bulk density (ΔBD) and soil organic carbon concentration (ΔSOCC) from the 2000s to 2010s across Tibetan permafrost regions.

Similar content being viewed by others

References

  1. Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  2. Ding, J. et al. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Glob. Change Biol. 22, 2688–2701 (2016).

    Article  Google Scholar 

  3. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  Google Scholar 

  4. Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).

    Article  Google Scholar 

  5. Schuur, E. A. G. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    Article  Google Scholar 

  6. McGuire, A. D. et al. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Glob. Biogeochem. Cycles 30, 1015–1037 (2016).

    Article  Google Scholar 

  7. Koven, C. D. et al. Permafrost carbon–climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).

    Article  Google Scholar 

  8. Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon–climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).

    Google Scholar 

  9. Luo, Y. et al. Toward more realistic projections of soil carbon dynamics by Earth System Models. Glob. Biogeochem. Cycles 30, 40–56 (2016).

    Article  Google Scholar 

  10. Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

    Article  Google Scholar 

  11. Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M. & Kirk, G. J. D. Carbon losses from all soils across England and Wales 1978–2003. Nature 437, 245–248 (2005).

    Article  Google Scholar 

  12. Prietzel, J., Zimmermann, L., Schubert, A. & Christophel, D. Organic matter losses in German Alps forest soils since the 1970s most likely caused by warming. Nat. Geosci. 9, 543–548 (2016).

    Article  Google Scholar 

  13. Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).

    Article  Google Scholar 

  14. Elberling, B. et al. Long-term CO2 production following permafrost thaw. Nat. Clim. Change 3, 890–894 (2013).

    Article  Google Scholar 

  15. Mu, C. et al. Editorial: organic carbon pools in permafrost regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere 9, 479–486 (2015).

    Article  Google Scholar 

  16. Wang, B., Bao, Q., Hoskins, B., Wu, G. & Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 35, L14702 (2008).

    Article  Google Scholar 

  17. Li, L., Yang, S., Wang, Z., Zhu, X. & Tang, H. Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res. 42, 449–457 (2010).

    Article  Google Scholar 

  18. Wu, Q. & Zhang, T. Recent permafrost warming on the Qinghai-Tibetan Plateau. J. Geogr. Sci. 113, D13108 (2008).

    Google Scholar 

  19. Zhang, Y. et al. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. J. Geogr. Sci. 24, 269–287 (2014).

    Article  Google Scholar 

  20. Zhuang, Q. et al. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model. Glob. Ecol. Biogeogr. 19, 649–662 (2010).

    Google Scholar 

  21. Yang, Y. et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol. 14, 1592–1599 (2008).

    Article  Google Scholar 

  22. Yu, X. et al. Variable responses to long-term simulated warming of underground biomass and carbon allocations of two alpine meadows on the Qinghai-Tibet Plateau. Chin. Sci. Bull. 60, 379–388 (2015).

    Article  Google Scholar 

  23. Xu, M. et al. Effects of experimental warming on the root biomass of an alpine meadow on the Qinghai-Tibetan Plateau, China. Acta Ecol. Sin. 36, 6812–6822 (2016).

    Article  Google Scholar 

  24. Mathieu, J. A., Hatté, C., Balesdent, J. & Parent, É. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles. Glob. Change Biol. 21, 4278–4292 (2015).

    Article  Google Scholar 

  25. Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z. & Chenu, C. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob. Change Biol. 16, 416–426 (2010).

    Article  Google Scholar 

  26. Gillabel, J., Cebrian-Lopez, B., Six, J. & Merckx, R. Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob. Change Biol. 16, 2789–2798 (2010).

    Article  Google Scholar 

  27. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  Google Scholar 

  28. Fierer, N., Allen, A. S., Schimel, J. P. & Holden, P. A. Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob. Change Biol. 9, 1322–1332 (2003).

    Article  Google Scholar 

  29. Tian, Q. et al. Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil. Biogeochemistry 128, 125–139 (2016).

    Article  Google Scholar 

  30. Garcia-Pausas, J. et al. Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands. Soil Biol. Biochem. 40, 2803–2810 (2008).

    Article  Google Scholar 

  31. Zhang, X. Z. et al. Ecological change on the Tibetan Plateau. Chin. Sci. Bull. 60, 3048–3056 (2015).

    Article  Google Scholar 

  32. Piao, S. et al. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai–Tibetan grasslands over the past five decades. Glob. Planet. Change 98–99, 73–80 (2012).

    Article  Google Scholar 

  33. Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).

    Article  Google Scholar 

  34. Huang, K. et al. The influences of climate change and human Activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens. 8, 876 (2016).

    Article  Google Scholar 

  35. Lee, H., Schuur, E. A. G. & Vogel, J. G. Soil CO2 production in upland tundra where permafrost is thawing. J. Geophys. Res. 115, G01009 (2010).

    Article  Google Scholar 

  36. Yan, L., Zhou, G. S., Wang, Y. H., Hu, T. Y. & Sui, X. H. The spatial and temporal dynamics of carbon budget in the alpine grasslands on the Qinghai-Tibetan Plateau using the Terrestrial Ecosystem Model. J. Clean. Prod. 107, 195–201 (2015).

    Article  Google Scholar 

  37. Guillaume, T., Damris, M. & Kuzyakov, Y. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ13C. Glob. Change Biol. 21, 3548–3560 (2015).

    Article  Google Scholar 

  38. Li, D. et al. Simulating of the response of soil heterotrophic respiration to climate change and nitrogen deposition in alpine meadows. Acta Prataculturae Sin. 24, 1–11 (2015).

    Google Scholar 

  39. Jin, Z., Zhuang, Q., He, J.-S., Zhu, X. & Song, W. Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100. Environ. Res. Lett. 10, 085007 (2015).

    Article  Google Scholar 

  40. Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).

    Article  Google Scholar 

  41. Chen, L. et al. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat. Commun. 7, 13046 (2016).

    Article  Google Scholar 

  42. Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D. & Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Sci. Rev. 103, 31–44 (2010).

    Article  Google Scholar 

  43. Lu, H. et al. Distribution of carbon isotope composition of modern soils on the Qinghai-Tibetan Plateau. Biogeochemistry 70, 275–299 (2004).

    Article  Google Scholar 

  44. Yang, Y. et al. Edaphic rather than climatic controls over 13C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau. Funct. Ecol. 29, 839–848 (2015).

    Article  Google Scholar 

  45. Nelson, D. & Sommers, L. Total carbon, organic carbon, and organic matter. in Methods of Soil Analysis II (ed. Page, A. L.) (American Society of Agronomy, 1982).

    Google Scholar 

  46. Holben, B. N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 7, 1417–1434 (1986).

    Article  Google Scholar 

  47. Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    Article  Google Scholar 

  48. Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  49. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016); https://www.R-project.org

Download references

Acknowledgements

We thank the members of Peking University Sampling Teams (2001–2004) and IBCAS Sampling Teams (2013–2014) for assistance in field data collection. We also thank the Forestry Bureau of Qinghai Province and the Forestry Bureau of Tibet Autonomous Region for their permission and assistance during the sampling process. This study was financially supported by the National Natural Science Foundation of China (31670482 and 31322011), National Basic Research Program of China on Global Change (2014CB954001 and 2015CB954201), Chinese Academy of Sciences-Peking University Pioneer Cooperation Team, and the Thousand Young Talents Program.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. conceived and designed the experiment. J.D., Y.Y., C.J., G.Y., F.L., K.F. Y.C. and J.F. collected samples in the field. J.D., L.L., S.Q., B.Z. and K.F. processed and analysed samples in the lab. Y.L. and H.H. provided long-term biomass monitoring data, and eddy-covariance flux data set. X.Z. provided the NDVI data. J.D., Y.Y. and L.C. analysed the data. J.D., Y.Y. and L.C. drafted the manuscript. G.H., Y.P., P.S. and J.F. contributed to the revision of the manuscript. All authors commented on the analysis and presentation of the results.

Corresponding author

Correspondence to Yuanhe Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1674 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Chen, L., Ji, C. et al. Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geosci 10, 420–424 (2017). https://doi.org/10.1038/ngeo2945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing