Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean

Abstract

During the mid-Cretaceous period, the global subsurface oceans were relatively warm, but the origins of the high temperatures are debated. One hypothesis suggests that high sea levels and the continental configuration allowed high-salinity waters in low-latitude epicontinental shelf seas to sink and form deep-water masses1,2,3. In another scenario, surface waters in high-latitude regions, the modern area of deep-water formation, were warmed through greenhouse forcing4, which then propagated through deep-water circulation. Here, we use oxygen isotopes and Mg/Ca ratios from benthic foraminifera to reconstruct intermediate-water conditions in the tropical proto-Atlantic Ocean from 97 to 92 Myr ago. According to our reconstruction, intermediate-water temperatures ranged between 20 and 25 C, the warmest ever documented for depths of 500–1,000 m. Our record also reveals intervals of high-salinity conditions, which we suggest reflect an influx of saline water derived from epicontinental seas around the tropical proto-North Atlantic Ocean. Although derived from only one site, our data indicate the existence of warm, saline intermediate waters in this silled basin. This combination of warm saline intermediate waters and restricted palaeogeography probably acted as preconditioning factors for the prolonged period of anoxia and black-shale formation in the equatorial proto-North Atlantic Ocean during the Cretaceous period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: δ18O for planktic (black) and benthic foraminifera of sites 1258 (orange) and 1260 (red).
Figure 2: Benthic foraminiferal abundances and δ18O values of sites 1258 and 1260 for the time interval between 94.4 and 96.4 Myr.

Similar content being viewed by others

References

  1. Brass, G. W., Southam, J. R. & Peterson, W. H. Warm saline bottom waters in the ancient ocean. Nature 296, 620–623 (1982).

    Article  Google Scholar 

  2. Arthur, M. A. & Natland, J. H. Carbonaceous sediments in the North and South Atlantic; the role of salinity in stable stratification of Early Cretaceous basins. Maurice Ewing Ser. 3, 375–401 (1979).

    Article  Google Scholar 

  3. Chamberlin, T. C. On a possible reversal of deep-sea circulation and its influence on geologic climates. J. Geol. 14, 363–373 (1906).

    Article  Google Scholar 

  4. Bice, K. L. & Marotzke, J. Numerical evidence against reversed thermohaline circulation in the warm Paleocene/Eocene ocean. J. Geophys. Res. 106, 11529–11542 (2001).

    Article  Google Scholar 

  5. Huber, B. T., Norris, R. D. & MacLeod, K. G. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30, 123–126 (2002).

    Article  Google Scholar 

  6. Bice, K. L. et al. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21, 10.1029/2005PA001203 (2006).

    Article  Google Scholar 

  7. Moriya, K., Wilson, P. A., Friedrich, O., Erbacher, J. & Kawahata, H. Testing for ice sheets during the mid-Cretaceous greenhouse using glassy foraminiferal calcite from the mid-Cenomanian tropics on Demerara Rise. Geology 35, 615–618 (2007).

    Article  Google Scholar 

  8. Bornemann, A. et al. Isotopic evidence for glaciation during the Cretaceous supergreenhouse. Science 319, 189–192 (2008).

    Article  Google Scholar 

  9. Wilson, P. A., Norris, R. D. & Cooper, M. J. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology 30, 607–610 (2002).

    Article  Google Scholar 

  10. Leckie, R. M., Bralower, T. J. & Cashman, R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17, 10.1029/2001PA000623 (2002).

  11. Erbacher, J., Friedrich, O., Wilson, P. A., Birch, H. & Mutterlose, J. Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic. Geochem. Geophys. Geosyst. 6, 10.1029/2004GC000850 (2005).

  12. Wilson, P. A. & Norris, R. D. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412, 425–428 (2001).

    Article  Google Scholar 

  13. Poulsen, C. J., Barron, E. J., Arthur, M. A. & Peterson, W. H. Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography 16, 576–592 (2001).

    Article  Google Scholar 

  14. Woo, K. S., Anderson, T. F., Railsback, L. B. & Sandberg, P. A. Oxygen isotope evidence for high-salinity surface seawater in the mid-Cretaceous Gulf of Mexico: Implications for warm, saline deepwater formation. Paleoceanography 7, 673–685 (1992).

    Article  Google Scholar 

  15. Wilson, P. A. & Dickson, J. A. D. Radiaxial calcite: Alteration product of and petrographic proxy for magnesian calcite marine cement. Geology 24, 945–948 (1996).

    Article  Google Scholar 

  16. Erbacher, J. et al. Proc. Ocean Drilling Program, Initial Reports Vol. 207 (Ocean Drilling Program, College Station, 2004).

  17. Nederbragt, A. J., Thurow, J. & Pearce, R. Sediment composition and cyclicity in the mid-Cretaceous at Demerara Rise, ODP Leg 207. Proc. ODP Sci. Res. 207, 10.2973/odp.proc.sr.207.103.2007 (2007).

  18. Hardas, P. & Mutterlose, J. Calcareous nannofossil biostratigraphy of the Cenomanian/Turonian boundary interval of ODP Leg 207 at the Demerara Rise. Rev. Micropaléontol. 49, 165–179 (2006).

    Article  Google Scholar 

  19. World Ocean Atlas 2001. <http://www.nodc.noaa.gov/OC5/WOA01F/tsearch.html> (2001).

  20. Wilkinson, B. H. & Algeo, T. J. Sedimentary carbonate record of calcium-magnesium cycling. Am. J. Sci. 289, 1158–1194 (1989).

    Article  Google Scholar 

  21. Dercourt, J., Ricou, L. E. & Vrielynck, B. Atlas Tethys Paleoenvironmental Maps (CCGM, Paris, 1993).

    Google Scholar 

  22. Meschede, M. & Frisch, W. A plate-tectonic model for the Mesozoic and early Cenozoic history of the Caribbean plate. Tectonophysics 296, 269–291 (1998).

    Article  Google Scholar 

  23. Otto-Bliesner, B. L., Brady, E. C. & Shields, C. Late Cretaceous ocean: Coupled simulations with the National Center for Atmospheric Research Climate System Model. J. Geophys. Res. 107, 10.1029/2001JD000821 (2002).

  24. Wold, C. N. Palaeobathymetric reconstruction on a gridded database: The northern North Atlantic and southern Greenland-Iceland-Norwegian Sea. Geol. Soc. Lond., Spec. Publ. 90, 271–302 (1995).

    Article  Google Scholar 

  25. Voigt, S., Gale, A. S. & Flögel, S. Midlatitude shelf seas in the Cenomanian-Turonian greenhouse world: Temperature evolution and North Atlantic circulation. Paleoceanography 19, 10.1029/2003PA001015 (2004).

  26. Erlich, R. N., Villamil, T. & Keens-Dumas, J. Controls on the deposition of Upper Cretaceous organic carbon-rich rocks from Costa Rica to Suriname. AAPG Mem. 79, 1–45 (2003).

    Google Scholar 

  27. Haq, B. U., Hardenbol, J. & Vail, P. R. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–1167 (1987).

    Article  Google Scholar 

  28. Wilson, P. A. & Roberts, H. H. Density cascading: off-shelf sediment transport, evidence and implications, Bahama Banks. J. Sedim. Res. 65, 45–56 (1995).

    Google Scholar 

  29. Hardenbol, J. et al. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. SEPM Spec. Publ. 60, 3–13 (1998).

    Google Scholar 

  30. Bemis, B. E., Spero, H. J., Bijma, J. & Lea, D. W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 13, 150–160 (1998).

    Article  Google Scholar 

  31. Shackleton, N. J. & Kennett, J. P. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analysis in DSDP sites 277, 279, and 280. DSDP Init. Rep. 29, 743–755 (1975).

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Leg 207 Shipboard Scientific Party, W. Hale, N. Westphal, K. Noeske and S. Feller. D. Panten, N. Andersen and H. Erlenkeuser are thanked for measuring stable isotopes. Our paper benefited from discussions with H. Brumsack, A. Forster, P. Hardas, A. Hetzel, J. Mutterlose, R. Norris and P. Sexton. This research used samples provided by the Ocean Drilling Program. ODP is sponsored by the US National Science Foundation and participating countries under the management of Joint Oceanographic Institutions. Financial support for this study was provided by the German Research Foundation (to O.F., J.E. and H.K.), KAKENHI (to K.M.) and UK ODP NERC (to P.A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Friedrich.

Supplementary information

Supplementary Information

Supplementary figures S1-S3 and tables S1-S7 (PDF 2034 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, O., Erbacher, J., Moriya, K. et al. Warm saline intermediate waters in the Cretaceous tropical Atlantic Ocean. Nature Geosci 1, 453–457 (2008). https://doi.org/10.1038/ngeo217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing