Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regional strategies for the accelerating global problem of groundwater depletion

Abstract

Groundwater—the world's largest freshwater resource—is critically important for irrigated agriculture and hence for global food security. Yet depletion is widespread in large groundwater systems in both semi-arid and humid regions of the world. Excessive extraction for irrigation where groundwater is slowly renewed is the main cause of the depletion, and climate change has the potential to exacerbate the problem in some regions. Globally aggregated groundwater depletion contributes to sea-level rise, and has accelerated markedly since the mid-twentieth century. But its impacts on water resources are more obvious at the regional scale, for example in agriculturally important parts of India, China and the United States. Food production in such regions can only be made sustainable in the long term if groundwater levels are stabilized. To this end, a transformation is required in how we value, manage and characterize groundwater systems. Technical approaches—such as water diversion, artificial groundwater recharge and efficient irrigation—have failed to balance regional groundwater budgets. They need to be complemented by more comprehensive strategies that are adapted to the specific social, economic, political and environmental settings of each region.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of the global water cycle and the rate of groundwater depletion and corresponding sea-level rise for the period 1950–2010.
Figure 2: Global groundwater depletion and the potential for changes in groundwater recharge in areas of groundwater depletion.
Figure b1: The fluxes in and out of groundwater systems.
Figure 3: Groundwater depletion for major groundwater basins in relation to extraction and aridity.
Figure 4: Setting long-term goals and backcasting as groundwater management strategies by the Texas Water Development Board.

Similar content being viewed by others

References

  1. World Water Assessment Programme. The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk. Report No. 978-92-3-104235-5, 407 (UNESCO, 2012).

  2. Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Google Scholar 

  3. Foster, S. S. D. & Chilton, P. J. Groundwater: The processes and global significance of aquifer degradation. Phil. Trans. R. Soc. Lond. B 358, 1957–1972 (2003).

    Google Scholar 

  4. Van der Gun, J. Groundwater and Global Change: Trends, Opportunities and Challenges. (UNESCO, 2012).

    Google Scholar 

  5. Alley, W. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. Flow and storage in groundwater systems. Science 296, 1985–1990 (2002).

    Google Scholar 

  6. Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 10, 52–67 (2002).

    Google Scholar 

  7. Schwartz, F. W. & Ibaraki, M. Groundwater: A resource in decline. Elements 7, 175–179 (2011).

    Google Scholar 

  8. Scanlon, B. R., Jolly, I., Sophocleous, M. & Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Wat. Resour. Res. 43, W03437 (2007).

    Google Scholar 

  9. Siebert, S. et al. Groundwater use for irrigation — a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    Google Scholar 

  10. Döll, P. et al. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 59–60, 143–156 (2011).

    Google Scholar 

  11. World Water Assessment Programme. The United Nations World Water Development Report 3: Water in a Changing World. Report No. 978-92-3-104235-5, 407 (UNESCO, 2009).

  12. Giordano, M. Global groundwater? Issues and solutions. Annu. Rev. Environ. Resour. 34, 153–178 (2009).

    Google Scholar 

  13. Giordano, M. & Villholth, K. G. (eds). The Agricultural Groundwater Revolution: Opportunities and Threats to Development. (CABI, 2007).

    Google Scholar 

  14. Konikow, L. F. & Kendy, E. Groundwater depletion: A global problem. Hydrogeol. J. 13, 317–320 (2005).

    Google Scholar 

  15. Fishman, R. M., Siegfried, T., Raj, P., Modi, V. & Lall, U. Over-extraction from shallow bedrock versus deep alluvial aquifers: Reliability versus sustainability considerations for India's groundwater irrigation. Water Resour. Res. 47, W00L05 (2011).

    Google Scholar 

  16. Shah, T. in The Agricultural Groundwater Revolution: Opportunities and Threats to Development (eds Giordano, M. & Villholth, K. G.) 7–36 (CABI, 2007).

    Google Scholar 

  17. Sophocleous, M. From safe yield to sustainable development of water resources — the Kansas experience. J. Hydrol. 235, 27–43 (2000).

    Google Scholar 

  18. Brunner, P. & Kinzelbach, W. in Encyclopedia of Hydrological Sciences (ed. Anderson, M. P.) (Wiley, 2008).

    Google Scholar 

  19. Fogg, G. E. & LaBolle, E. M. Motivation of synthesis, with an example on groundwater quality sustainability. Wat. Resour. Res. 42, W03S05 (2006).

    Google Scholar 

  20. Fendorf, S., Michael, H. A. & van Geen, A. Spatial and temporal variations of groundwater arsenic in south and southeast Asia. Science 328, 1123–1127 (2010).

    Google Scholar 

  21. Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett. 4, 035006 (2009).

    Google Scholar 

  22. Döll, P. & Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 12, 863–885 (2008).

    Google Scholar 

  23. Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. 38, L17401 (2011).

    Google Scholar 

  24. Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    Google Scholar 

  25. Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1003 (2009).

    Google Scholar 

  26. Longuevergne, L., Scanlon, B. R. & Wilson, C. R. GRACE hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA. Wat. Resour. Res. 46, W11517 (2010).

    Google Scholar 

  27. Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California's Central Valley. Geophys. Res. Lett. 38, L03403 (2011).

    Google Scholar 

  28. Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).

    Google Scholar 

  29. Wada, Y. et al. Past and future contribution of global groundwater depletion to sea-level rise. Geophys. Res. Lett. 39, L09402 (2012).

    Google Scholar 

  30. Pokhrel, Y. N. et al. Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage. Nature Geosci. 5, 389–392 (2012).

    Google Scholar 

  31. Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: A global assessment. Wat. Resour. Res. 48 (2012).

  32. Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    Google Scholar 

  33. Tiwari, V. M., Wahr, J. & Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 36, L18401 (2009).

    Google Scholar 

  34. Shah, T. Climate change and groundwater: India's opportunities for mitigation and adaptation. Environ. Res. Lett. 4, 035005 (2009).

    Google Scholar 

  35. Kendy, E. The false promise of sustainable pumping rates. Ground Wat. 41, 2–4 (2003).

    Google Scholar 

  36. Kendy, E., Zhang, Y. Q., Liu, C. M., Wang, J. X. & Steenhuis, T. Groundwater recharge from irrigated cropland in the North China Plain: Case study of Luancheng County, Hebei Province, 1949–2000. Hydrol. Processes 18, 2289–2302 (2004).

    Google Scholar 

  37. Foster, S. et al. Quaternary aquifer of the North China Plain — assessing and achieving groundwater resource sustainability. Hydrogeol. J. 12, 81–93 (2004).

    Google Scholar 

  38. Liu, J., Zheng, C., Zheng, L. & Lei, Y. Ground water sustainability: methodology and application to the North China Plain. Ground Wat. 46, 897–909 (2008).

    Google Scholar 

  39. von Rohden, C., Kreuzer, A., Chen, Z. Y., Kipfer, R. & Aeschbach-Hertig, W. Characterizing the recharge regime of the strongly exploited aquifers of the North China Plain by environmental tracers. Wat. Resour. Res. 46, W05511 (2010).

    Google Scholar 

  40. McMahon, P. B., Böhlke, J. K. & Christenson, S. C. Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Appl. Geochem. 19, 1655–1686 (2004).

    Google Scholar 

  41. Bredehoeft, J. D. The water budget myth revisited: why hydrogeologists model. Ground Wat. 40, 340–345 (2002).

    Google Scholar 

  42. Alley, W. M. & Leake, S. A. The journey from safe yield to sustainability. Ground Wat. 42, 12–16 (2004).

    Google Scholar 

  43. Devlin, J. F. & Sophocleous, M. The persistence of the water budget myth and its relationship to sustainability. Hydrogeol. J. 13, 549–554 (2005).

    Google Scholar 

  44. Zhou, Y. A critical review of groundwater budget myth, safe yield and sustainability. J. Hydrol. 370 (2009).

    Google Scholar 

  45. Sophocleous, M. Managing water resources systems: Why 'safe yield' is not sustainable. Ground Wat. 35, 561 (1997).

    Google Scholar 

  46. Bredehoeft, J. D. & Durbin, T. Ground water development—the time to full capture problem. Ground Wat. 47, 506–514 (2009).

    Google Scholar 

  47. Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).

    Google Scholar 

  48. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Google Scholar 

  49. Allan, J. A. Virtual water: A strategic resource global solutions to regional deficits. Ground Wat. 36, 545–546 (1998).

    Google Scholar 

  50. Liu, J., Zehnder, A. J. B. & Yang, H. Global consumptive water use for crop production: The importance of green water and virtual water. Wat. Resour. Res. 45, W05428 (2009).

    Google Scholar 

  51. Kundzewicz, Z. W. et al. Freshwater resources and their management. in IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 173–210 (Cambridge Univ. Press, 2007).

    Google Scholar 

  52. Bates, B. C., Kundzewicz, Z. W., Wu, S. & Palutikof, J. P. (eds). Climate Change and Water (IPCC Secretariat, 2008).

    Google Scholar 

  53. Scanlon, B. R. et al. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Processes 20, 3335–3370 (2006).

    Google Scholar 

  54. Weider, K. & Boutt, D. F. Heterogeneous water table response to climate revealed by 60 years of ground water data. Geophys. Res. Lett. 37, L24405 (2010).

    Google Scholar 

  55. Kundzewicz, Z. W. & Döll, P. Will groundwater ease freshwater stress under climate change? Hydrol. Sci. J. 54, 665–675 (2009).

    Google Scholar 

  56. Allen, D. M., Cannon, A. J., Toews, W. & Scibek, J. Variability in simulated recharge using different GCMs. Wat. Resour. Res. 46, W00F03 (2010).

    Google Scholar 

  57. Crosbie, R. S. et al. Differences in future recharge estimates due to GCMs, downscaling methods and hydrological models. Geophys. Res. Lett. 38, L11406 (2011).

    Google Scholar 

  58. Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003).

    Google Scholar 

  59. Stone, R. & Jia, H. Going against the flow. Science 313, 1034–1037 (2006).

    Google Scholar 

  60. Gleeson, T. et al. Groundwater sustainability strategies. Nature Geosci. 3, 378–379 (2010).

    Google Scholar 

  61. Gleeson, T. et al. Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively. Ground Wat. 50, 19–26 (2012).

    Google Scholar 

  62. Seward, P., Xu, Y. & Brendonck, L. Sustainable groundwater used, the capture principle, and adaptive management. Wat. SA 32, 473–482 (2006).

    Google Scholar 

  63. McMichael, A. J., Butler, C. D. & Folke, C. New visions for addressing sustainability. Science 302, 1919–1920 (2003).

    Google Scholar 

  64. Norton, B. G. Sustainability: A Philosophy of Adaptive Ecosystem Management, 607 (Univ. Chicago Press, 2005).

    Google Scholar 

  65. Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Google Scholar 

  66. Brooks, D. B., Brandes, O. M. & Gurman, S. (eds). Making the Most of the Water We Have: The Soft Path Approach to Water Management (Routledge, 2009).

    Google Scholar 

  67. Hutchison, W. R. The use of groundwater availability models in Texas in the establishment of desired future conditions. GSA Annual Meeting 2010 (Geological Society of America, 2010).

    Google Scholar 

  68. Theesfeld, I. Institutional challenges for national groundwater governance: Policies and issues. Ground Wat. 48, 131–142 (2010).

    Google Scholar 

  69. Nelson, R. L. Assessing local planning to control groundwater depletion: California as a microcosm of global issues. Water Resour. Res. 48, W01502 (2012).

    Google Scholar 

  70. Sagala, J. K. & Smith, Z. A. Comparative groundwater management: findings from an exploratory global survey. Wat. Int. 33, 258–267 (2008).

    Google Scholar 

  71. Sophocleous, M. Review: Groundwater management practices, challenges, and innovations in the High Plains aquifer, USA — lessons and recommended actions. Hydrogeol. J. 18, 559–575 (2010).

    Google Scholar 

  72. Scott, C. A. & Sharma, B. Energy supply and the expansion of groundwater irrigation in the Indus–Ganges Basin. Int. J. River Basin Manage. 7, 119–124 (2009).

    Google Scholar 

  73. Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge Univ. Press, 1990).

    Google Scholar 

  74. Koundouri, P. Current issues in the economics of groundwater resource management. J. Econ. Surveys 18, 703–740 (2004).

    Google Scholar 

  75. Scott, C. A. The water–energy–climate nexus: Resources and policy outlook for aquifers in Mexico. Wat. Resour. Res. 47, W00L04 (2011).

    Google Scholar 

  76. World Bank. Deep Wells and Prudence: Towards Pragmatic Action for Addressing Groundwater Overexploitation in India. Report No. 51676, (The World Bank, 2010).

  77. Chapagain, A. K., Hoekstra, A. Y. & Savenije, H. G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 10, 455–468 (2006).

    Google Scholar 

  78. Kinzelbach, W., Bauer, P., Siegfried, T. & Brunner, P. Sustainable groundwater management — problems and scientific tools. Episodes 26, 279–284 (2003).

    Google Scholar 

  79. Goderniaux, P. et al. Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios. Wat. Resour. Res. 47, W12516 (2011).

    Google Scholar 

  80. Scibek, J. & Allen, D. M. Modeled impacts of predicted climate change on recharge and groundwater levels. Wat. Resour. Res. 42, W11405 (2006).

    Google Scholar 

  81. van Roosmalen, L., Sonnenborg, T. O. & Jensen, K. H. Impact of climate and land use change on the hydrology of a large-scale agricultural catchment. Wat. Resour. Res. 45, W00A15 (2009).

    Google Scholar 

  82. Shiklomanov, I. A. Appraisal and assessment of world water resources. Wat. Int. 25, 11–32 (2000).

    Google Scholar 

  83. UNESCO. World Water Balance and Water Resources of the Earth. USSR Committee for the International Hydrologic Decade (UNESCO, Paris, 1978).

  84. Falkenmark, M. & Rockström, J. The new blue and green water paradigm: Breaking new ground for water resources planning and management. J. Wat. Resour. Plann. Manage. 132, 129–132 (2006).

    Google Scholar 

  85. Hoff, H. et al. Greening the global water system. J. Hydrol. 384, 177–186 (2010).

    Google Scholar 

  86. Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).

    Google Scholar 

  87. BGR/UNESCO. Groundwater resources of the world 1:25000000. (BGR, 2008).

  88. Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).

    Google Scholar 

  89. UNEP. World Atlas of Desertification 2ED, 182 (United Nations Environment Programme, 1997).

  90. Theis, C. V. The source of water derived from wells. Civ. Eng. 10, 277–280 (1940).

    Google Scholar 

  91. Sophocleous, M. On understanding and predicting groundwater response time. Ground Wat. 50, 528–540 (2012).

    Google Scholar 

  92. Kazemi, G. A., Lehr, J. H. & Perrochet, P. Groundwater Age, 325 (Wiley, 2006).

    Google Scholar 

  93. Cook, P. G. & Herczeg, A. L. (eds). Environmental Tracers in Subsurface Hydrology (Kluwer, 2000).

    Google Scholar 

  94. Newman, B. D. et al. Dating of 'young' groundwaters using environmental tracers: advantages, applications, and research needs. Isot. Environ. Health Stud. 46, 259–278 (2010).

    Google Scholar 

  95. Sturchio, N. C. et al. One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys. Res. Lett. 31, L05503 (2004).

    Google Scholar 

  96. McMahon, P. B., Plummer, L. N., Böhlke, J. K., Shapiro, S. D. & Hinkle, S. R. A comparison of recharge rates in aquifers of the United States based on groundwater-age data. Hydrogeol. J. 19, 779–800 (2011).

    Google Scholar 

  97. Visser, A., Broers, H. P., van der Grift, B. & Bierkens, M. F. P. Demonstrating trend reversal of groundwater quality in relation to time of recharge determined by 3H/3He. Environ. Pollut. 148, 797–807 (2007).

    Google Scholar 

  98. van der Gun, J. & Lipponen, A. Reconciling groundwater storage depletion due to pumping with sustainability. Sustainability 2, 3418–3435 (2010).

    Google Scholar 

  99. Foster, S. S. D. & Loucks, D. P. Non-Renewable Groundwater Resources: A Guidebook on Socially-Sustainable Management for Water-Policy Makers (UNESCO, 2006).

    Google Scholar 

  100. Neumayer, E. Weak Versus Strong Sustainability: Exploring the Limits of Two Opposing Paradigms (Edward Elgar, 2003).

    Google Scholar 

  101. Uddameri, V. Sustainability and groundwater management. Clean Technol. Environ. Policy 7, 231–232 (2005).

    Google Scholar 

  102. Wackernagel, M. & Rees, W. Our Ecological Footprint (New Society, 1996).

    Google Scholar 

  103. Hoekstra, A. Y. Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis. Ecol. Econ. 68, 1963–1974 (2009).

    Google Scholar 

  104. Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    Google Scholar 

Download references

Acknowledgements

Edits by W. Alley, G. Ferguson and A. Reyes and discussions with P. Döll improved this manuscript. P. Döll, Y. Wada and the Texas Water Development Board provided data used in the figures. S. Mayer helped in drafting some figures. T.G. was supported by the Natural Sciences and Engineering Research Council of Canada and a Canadian Institute for Advanced Research junior fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this paper.

Corresponding author

Correspondence to Werner Aeschbach-Hertig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aeschbach-Hertig, W., Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nature Geosci 5, 853–861 (2012). https://doi.org/10.1038/ngeo1617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing