Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Continuous flux of dissolved black carbon from a vanished tropical forest biome

Abstract

Humans have used fire extensively as a tool to shape Earth’s vegetation. The slash-and-burn destruction of Brazil’s Atlantic forest, which once covered over 1.3 million km2 of present-day Brazil and was one of the largest tropical forest biomes on Earth1, is a prime example. Here, we estimate the amount of black carbon generated by the burning of the Atlantic forest, using historical records of land cover, satellite data and black carbon conversion ratios. We estimate that before 1973, destruction of the Atlantic forest generated 200–500 million tons of black carbon. We then estimate the amount of black carbon exported from this relict forest between 1997 and 2008, using measurements of polycyclic aromatic black carbon collected from a large river draining the region, and a continuous record of river discharge. We show that dissolved black carbon (DBC) continues to be mobilized from the watershed each year in the rainy season, despite the fact that widespread forest burning ceased in 1973. We estimate that the river exports 2,700 tons of DBC to the ocean each year. Scaling our findings up, we estimate that 50,000–70,000 tons of DBC are exported from the former forest each year. We suggest that an increase in black carbon production on land could increase the size of the refractory pool of dissolved organic carbon in the deep ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The study area.
Figure 2: Time series of Paraíba do Sul River for 1997–2008.
Figure 3: History of black carbon production in the drainage basin of Paraíba do Sul River for the past 200 years.

Similar content being viewed by others

References

  1. Fundação SOS Mata Atlântica and Instituto Nacional de Pesquisas Espaciais. Atlas dos remansecentes florestais da Mata Atlântica, período 2008–2010. (INPE and SOS Mata Atlântica, 1993 and 2011).

  2. Warren, D. With Broadax and Firebrand. The destruction of the Brazilian Atlantic forest (Univ. California Press, 1995).

    Google Scholar 

  3. Forbes, M. S., Raison, R. J. & Skjemstad, J. O. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci. Total Environ. 270, 190–206 (2006).

    Article  Google Scholar 

  4. Schmidt, M. W. I. et al. Soil organic matter persistence as an ecosystem property. Nature 478, 49–56 (2011).

    Article  Google Scholar 

  5. Masiello, C. A. & Druffel, E. R. M. Black carbon in deep-sea sediments. Nature 280, 1911–1913 (1998).

    Google Scholar 

  6. Kuhlbusch, T. A. J & Crutzen, P. J. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2 . Glob. Geochem. Cycles 9, 491–501 (1995).

    Article  Google Scholar 

  7. Hockaday, W. C., Grannas, A. M., Kim, S. & Hatcher, P. G. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org. Geochem. 37, 501–510 (2006).

    Article  Google Scholar 

  8. Cheng, C-H. & Lehmann, J. Ageing of black carbon along a temperature gradient. Chemosphere 75, 1021–1027 (2009).

    Article  Google Scholar 

  9. Abiven, S., Hengartner, P., Schneider, M. P. W., Singh, N. & Schmidt, M. W. I. Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal. Soil Biol. Biochem. 43, 1615–1617 (2011).

    Article  Google Scholar 

  10. Kim, S., Kaplan, L. A., Benner, R. & Hatcher, P. G. Hydrogen-deficient molecules in natural riverine water samples—evidence for the existence of black carbon in DOM. Marine Chem. 92, 225–234 (2004).

    Article  Google Scholar 

  11. Mannino, A. & Harvey, H. R. Black carbon in estuarine and coastal dissolved organic matter. Limnol. Oceanogr. 49, 735–740 (2004).

    Article  Google Scholar 

  12. Guggenberger, G. et al. Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Glob. Change Biol. 14, 1367–1381 (2008).

    Article  Google Scholar 

  13. Dittmar, T. & Paeng, J. A heat-induced molecular signature in marine dissolved organic matter. Nature Geosci. 2, 175–179 (2009).

    Article  Google Scholar 

  14. Lino, C. F. & Dias, H. Águas e florestas da Mata Atlântica: por uma gestão integrada (Conselho Nacional da Reserva da Biosfera da Mata Atlântica, 2003).

    Google Scholar 

  15. Hammes, K. et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Glob. Biogeochem. Cycles 21, GB3016 (2007).

    Article  Google Scholar 

  16. Evans, C. & Davies, T. D. Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Wat. Resour. Res. 34, 12–137 (1998).

    Article  Google Scholar 

  17. Stubbins, A. et al. Illuminating darkness: Molecular signatures of Congo River of dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol. Oceanogr. 55, 1497–1477 (2011).

    Google Scholar 

  18. Dittmar, T., Koch, B. P., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. 6, 230–235 (2008).

    Article  Google Scholar 

  19. Dittmar, T. The molecular level determination of black carbon in marine dissolved organic matter. Org. Geochem. 39, 396–407 (2008).

    Article  Google Scholar 

  20. Fearnside, P. M., Gráça, P. M. L. A., Filho, N. L., Rodrigues, F. J. A. & Robinson, J. M. Tropical forest burning in Brazilian Amazonia: Measurement of biomass loading, burning efficiency and charcoal formation at Altamira, Pará. Forest Ecol. Manage. 123, 65–79 (1999).

    Article  Google Scholar 

  21. Gráça, P. M. L. A., Fearnside, P. M. & Cerri, C. C. Burning of Amazonian forest in Ariquemes, Rondonia, Brazil: Biomass, charcoal formation and burning efficiency. Forest Ecol. Manage. 120, 179–191 (1999).

    Article  Google Scholar 

  22. Fearnside, P. M., Gráça, P. M. L. A. & Rodrigues, F. J. A. Burning of Amazonian rainforests: Burning efficiency and charcoal formation in forest cleared for cattle pasture near Manaus, Brazil. Forest Ecol. Manage. 146, 115–128 (2001).

    Article  Google Scholar 

  23. França, H. Metodologia de identificação quantificação de áreas queimadas no Cerrado com imagens AVHRR/NOAA PhD thesis. Universidade de São Paulo, Instituto de Biociências, (2000).

  24. Calazans, C. Origem e dinâmica da material orgânica em um sistema fluvio-lacustre da região norte Fluminense PhD thesis, Universidade Estadual do Norte Fluminense, Centro de Biociências e Biotecnologia. Campos dos Goytacazes, (1998).

  25. Sanhueza, E. Potential emissions of Kyoto and non-Kyoto climate active compounds in the production of sugarcane ethanol. Interscience 34, 8–16 (1999).

    Google Scholar 

  26. Marinho, E.V.A. & Kirchhoff, V. W. J. H. Projeto fogo: um experimento para avaliar efeitos das queimadas de cana-de-açúcar na baixa atmosfera. Revista Brasileira de Geofísica 9, 107–119 (1991).

    Google Scholar 

  27. Doerr, S. H. et al. Effects of differing wildfire severities on soil wettability and implications for hydrological response. J. Hydrol. 319, 295–311 (2006).

    Article  Google Scholar 

  28. Chafer, C. J. A comparison of fire severity measures: An Australian example and implications for predicting major areas of soil erosion. Catena 74, 235–245 (2008).

    Article  Google Scholar 

  29. Vasconcelos, A. C. M., Casagrande, A. A., Perecin, D., Jorge, L. A. C. & Landell, M. G. A. Evaluation of the sugarcane root system with different methods. Revista Brasileira de Ciência do Solo 27, 849–858 (2003).

    Article  Google Scholar 

  30. Bond, T. C., Street, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H. & Klimont, Z. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. 109, 1–43 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (304.615/2010-2 and INCT Material Transfer at the Continent–Ocean Interface 573.601/08-9), Fundação de Amparo a Pesquisa do Estado doRio de Janeiro—FAPERJ (E-26/102.697/2008) and the Hanse Institute for Advanced Studies (HWK, Delmenhorst, Germany). Thanks to A. Antonio Rosa Gobo, M. Friebe and I. Ulber for technical support. Thanks to our colleagues at the United States Geological Service, E. G. Stets, R. G. Striegl and M. M. Dornblaser, R. G. M. Spencer (Woods Hole Research Center) and T. Riedel (University of Braunschweig) for advice on the hydrological modelling. Instituto Nacional de Meteorologia do Brasil provided meteorological data.

Author information

Authors and Affiliations

Authors

Contributions

The idea of this study was jointly developed by C.E.d.R. and T.D. All authors contributed to sampling, chemical analysis and/or data interpretation, and to the general discussion. T.D. led the writing of the manuscript and the drafting of the figures. All authors provided input into the drafting and the final version of the manuscript.

Corresponding authors

Correspondence to Thorsten Dittmar or Carlos Eduardo de Rezende.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 513 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittmar, T., de Rezende, C., Manecki, M. et al. Continuous flux of dissolved black carbon from a vanished tropical forest biome. Nature Geosci 5, 618–622 (2012). https://doi.org/10.1038/ngeo1541

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1541

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology