Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction

Abstract

The evolution of complex life over the past 600 million years was disrupted by at least five mass extinctions, one of which occurred at the close of the Triassic period. The end-Triassic extinction corresponds to a period of high atmospheric-CO2 concentrations caused by massive volcanism and biomass burning; most extinction scenarios invoke the resulting environmental perturbations in accounting for the loss of marine and terrestrial biodiversity. Here we reconstruct changes in Tethyan shallow marine ecosystems and ocean redox chemistry from earliest Jurassic (Hettangian)-aged black shales from Germany and Luxemburg. The shales contain increased concentrations of the biomarker isorenieratane, a fossilized pigment from green sulphur bacteria. The abundance of green sulphur bacteria suggests that the photic zone underwent prolonged periods of high concentrations of hydrogen sulphide. This interval is also marked by the proliferation of green algae, an indicator of anoxia. We conclude that the redox changes in the entire water column reflect sluggish circulation in marginal regions of the Tethys Ocean. We suggest that the resultant repeated poisoning of shallow epicontinental seas—hotspots of Mesozoic biodiversity—with hydrogen sulphide may have slowed the recovery of marine ecosystems during the Early Jurassic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palaeogeography and location of the sites studied and mentioned in the text.
Figure 2: Overview of main lithological, biostratigraphical and geochemical data for Mariental and Rosswinkel.
Figure 3: Distributions of marine palynomorphs along a north-to-south transect across the European epicontinental seaway.

Similar content being viewed by others

References

  1. Sepkoski, J. J. Jr in Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, O.H.) 35–51 (Springer, 1996).

    Book  Google Scholar 

  2. Kiessling, W., Aberhan, M., Brenneis, B. & Wagner, P. J. Extinction trajectories of benthic organisms across the Triassic–Jurassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 201–222 (2007).

    Article  Google Scholar 

  3. Whiteside, J. H. & Ward, P. D. Ammonoid diversity and disparity track episodes of chaotic carbon cycling during the early Mesozoic. Geology 39, 99–102 (2011).

    Article  Google Scholar 

  4. Carter, E. S. & Hori, R. S. Global correlation of the radiolarian faunal change across the Triassic–Jurassic boundary. Can. J. Earth Sci. 42, 777–790 (2005).

    Article  Google Scholar 

  5. Greene, S. E., Martindale, R. C., Ritterbush, K. A., Bottjer, D. J., Corsetti, F. A. & Berelson, W. M. Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic–Jurassic boundary. Earth Sci. Rev. 113, 72–93 (2012).

    Article  Google Scholar 

  6. Ward, P. D. et al. Sudden productivity collapse associated with the Triassic–Jurassic boundary mass-extinction. Science 292, 1148–1151 (2001).

    Article  Google Scholar 

  7. Van de Schootbrugge, B. et al. End-Triassic calcification crisis and blooms of organic-walled disaster species. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 126–141 (2007).

    Article  Google Scholar 

  8. Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).

    Article  Google Scholar 

  9. Clemence, M-E. et al. Early Hettangian benthic-planktonic coupling at Doniford (SW England): Palaeoenvironmental implications for the aftermath of the end-Triassic crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 295, 102–115 (2010).

    Article  Google Scholar 

  10. Falkowski, P. G., Schofield, O., Katz, M. E., van de Schootbrugge, B. & Knoll, A.H. in Coccolithophorids: From Global Impact to Molecular Processes (eds Thierstein, H. R. & Young, J. R.) 429–453 (2004).

    Book  Google Scholar 

  11. Lund, J. J. Rhaetian to Pliensbachian palynostratigraphy of the central part of the NW German Basin exemplified by the Eitzendorf 8 well. Courier Forschungs-Institut Senckenberg 241, 69–83 (2003).

    Google Scholar 

  12. Heunisch, C. Palynologische Untersuchungen im oberen Keuper Nordwestdeutschlands. Neues Jahrbuch für Geologie und Palaontologie Abhandlungen 200, 87–105 (1996).

    Article  Google Scholar 

  13. Bonis, N. R., Ruhl, M. & Kürschner, W. M. Climate change driven black shale deposition during the end-Triassic in the western Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 290, 151–159 (2010).

    Article  Google Scholar 

  14. Götz, A. E., Ruckwied, K., Palfy, J. & Haas, J. Palynological evidence for synchronous changes within the terrestrial and marine realm at the Triassic–Jurassic boundary (Csövàr section, Hungary). Rev. Palaeobot. Palynol. 156, 401–409 (2009).

    Article  Google Scholar 

  15. Quigg, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294 (2004).

    Article  Google Scholar 

  16. Van de Schootbrugge, B. et al. Floral changes across the Triassic–Jurassic boundary linked to flood basalt volcanism. Nature Geosci. 2, 489–594 (2009).

    Article  Google Scholar 

  17. Hallam, A. Estimates of the amount and rate of sea-level change across the Rhaetian-Hettangian and Pliensbachian-Toarcian boundaries (latest Triassic to early Jurassic). J. Geol. Soc. Lond. 154, 773–779 (1997).

    Article  Google Scholar 

  18. Summons, R. E. & Powell, T. G. Chlorobiaceae in Paleozoic seas revealed by biological markers, isotopes and geology. Nature 319, 763–765 (1986).

    Article  Google Scholar 

  19. Sinninghe Damste, J. S., Schouten, S. & van Duin, A. C. T. Isorenieratene derivatives in sediments: Possible controls on their distribution. Geochim. Cosmochim. Acta 65, 1557–1571 (2001).

    Article  Google Scholar 

  20. Heunisch, C., Luppold, F.W., Reinhardt, L. & Röhling, H-G. Palynofazies, Bio-, und Lithostratigraphie im Grenzbereich Trias/Jura in der Bohrung Mariental I (Lappwaldmulde, Ostniedersachsen). Z. Detsch. Geologischen Gesellschaft 161, 51–98 (2010).

    Article  Google Scholar 

  21. Schwab, V. F. & Spangenberg, J. E. Molecular and isotopic characterization of biomarkers in the Frick Swiss Jura sediments: A palaeoenvironmental reconstruction on the northern Tethys margin. Org. Geochem. 38, 419–439 (2007).

    Article  Google Scholar 

  22. Wignall, P. B. Sedimentology of the Triassic–Jurassic boundary beds in Pinhay Bay (Devon, SW England). Proc. Geologists Assoc. 112, 349–360 (2001).

    Article  Google Scholar 

  23. Williford, K. H. Biogeochemistry of the Triassic–Jurassic boundaryPhD thesis, 1–173 (University of Washington, 2007).

  24. Quan, T., van de Schootbrugge, B., Field, P., Rosenthal, Y. & Falkowski, P. G. Nitrogen isotope and trace metal analyses from the Mingolsheim core (Germany): Evidence for redox variations across the Triassic–Jurassic boundary. Glob. Biogeochem. Cycles 22, GB2014 (2008).

    Article  Google Scholar 

  25. Paris, G. et al. Nitrogen isotope record of a perturbed paleoecosystem in the aftermath of the end-Triassic crisis, Doniford section, SW England. Geochem. Geophys. Geosyst. 11, Q08021 (2010).

    Article  Google Scholar 

  26. Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycles 8, 103–116 (1994).

    Article  Google Scholar 

  27. Wignall, P. B. et al. The end Triassic mass-extinction record of Williston Lake, British Columbia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 485–406 (2007).

    Article  Google Scholar 

  28. Moldowan, J. M., Sundararaman, P. & Schoell, M. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW Germany. Org. Geochem. 10, 915–926 (1985).

    Article  Google Scholar 

  29. Bucefalo Palliani, R. & Buratti, N. High diversity dinoflagellate cyst assemblages from the Late Triassic of southern England: New information on early dinoflagellate evolution and palaeogeography. Lethaia 39, 305–312 (2006).

    Article  Google Scholar 

  30. Pross, J. Paleo-oxygenation in Tertiary epeiric seas: Evidence from dinoflagellate cysts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 166, 369–381 (2001).

    Article  Google Scholar 

  31. Prauss, M. Availability of reduced nitrogen chemospecies in photic-zone waters as the ultimate cause for fossil prasinophyte prosperity. Palaios 22, 489–499 (2007).

    Article  Google Scholar 

  32. Litchman, E., Klausmeier, C. A., Miller, J. R., Schofield, O. M. & Falkowski, P. G. Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeosciences 3, 585–606 (2006).

    Article  Google Scholar 

  33. Lindström, S. & Erlström, M. The late Rhaetian transgression in southern Sweden: Regional (and global) recognition and relation to the Triassic–Jurassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 339–372 (2006).

    Article  Google Scholar 

  34. Suan, G. et al. Late Triassic bonebeds as unique archives of major environmental change prior to the Triassic–Jurassic mass extinction. J. Geol. Soc. Lond. 169, 191–200 (2012).

    Article  Google Scholar 

  35. van Bentum, E. C. et al. Reconstruction of water column anoxia in the equatorial Atlantic during the Cenomanian–Turonian oceanic anoxic event using biomarker and trace metal proxies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 489–498 (2009).

    Article  Google Scholar 

  36. Cao, C. Q., Love, G. D., Hays, L. E., Wang, W. & Shen, S. Z. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass-extinction event. Earth Planet. Sci. Lett. 281, 188–201 (2009).

    Article  Google Scholar 

  37. Grice, K. et al. Photic Zone Euxinia during the Permian–Triassic superanoxic event. Science 307, 706–709 (2005).

    Article  Google Scholar 

  38. Wignall, P. B. Large igneous provinces and mass extinctions. Earth-Sci. Rev. 53, 1–33 (2001).

    Article  Google Scholar 

  39. Hesselbo, S. P., Robinson, S. A., Surlyk, F. & Piasecki, S. Terrestrial and marine extinction at the Triassic–Jurassic boundary synchronized with major carbon cycle perturbation: A link to initiation of massive volcanism. Geology 30, 251–254 (2002).

    Article  Google Scholar 

  40. Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, A., Bellieni, G. & De Min, A. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284, 616–618 (1999).

    Article  Google Scholar 

  41. Marzoli, A. et al. Synchrony of the Central Magmatic Province and the Triassic–Jurassic boundary and biotic crisis. Geology 32, 973–976 (2004).

    Article  Google Scholar 

  42. McElwain, J. C., Beerling, D. J. & Woodward, F. I. Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285, 1386–1390 (1999).

    Article  Google Scholar 

  43. Steinthorsdottir, M., Jeram, A. J. & McElwain, J. C. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 418–432 (2011).

    Article  Google Scholar 

  44. Lindström, S. et al. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass-extinction. Geology 40, 531–534 (2012).

    Article  Google Scholar 

  45. Olsen, P. E. et al. Ascent of dinosaurs linked to an iridium anomaly at the Triassic–Jurassic boundary. Science 296, 1305–1307 (2002).

    Article  Google Scholar 

  46. Redfern, J. et al. in Petroleum Geology: From Mature Basins to New Frontiers (eds Vining, B. A. & Pickering, S. C.) 921–936 (Geol. Soc. Lond., 2010).

    Google Scholar 

  47. Bonis, N. R., Ruhl, M. & Kürschner, W. M. Milankovitch-scale palynological turnover across the Triassic–Jurassic transition at St Audrie’s Bay, SW UK. J. Geol. Soc. Lond. 167, 877–888 (2010).

    Article  Google Scholar 

  48. Van de Schootbrugge, B. et al. Carbon cycle perturbation and stabilization in the wake of the Triassic–Jurassic boundary mass-extinction event. Geochem. Geophys. Geosyst. 9, Q04028 (2008).

    Article  Google Scholar 

  49. Bonis, N. R., Kürschner, W.M. & Krystyn, L. A detailed palynological study of the Triassic–Jurassic transition in key sections of the Eiberg Basin (Northern Calcareous Alps, Austria). Revi. Palaeobot. Palynol. 156, 376–400 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Benbrahim (Geological Survey of Luxemburg) for providing access to the Rosswinkel FR 204-201 core. We appreciate the help of C. Christ and Y. Weber (both at the Goethe University Frankfurt) with the analysis and quantification of biomarkers of the Mariental and Rosswinkel cores. M. Baas (NIOZ) is thanked for organic geochemical analyses of additional samples. S.R., B.v.d.S. and J.P. acknowledge financial support through the Goethe University Frankfurt. J.P. acknowledges support through the Biodiversity and Climate Research Center Frankfurt (BIK-F). B.v.d.S. acknowledges financial support through the German Science Foundation (DFG SCHO 1216-5/1).

Author information

Authors and Affiliations

Authors

Contributions

S.R., B.v.d.S. and J.P. designed and carried out the research and wrote the paper. W.P. and S.S. carried out organic geochemical analyses and assisted with the interpretation. B.v.d.S. and C.H. generated the palynological data from Rosswinkel and Mariental. S.L. and J.P. assisted with the interpretation of the data. T.M.Q. was responsible for analysing the nitrogen isotopes and the interpretation. C.A.H. and S.R. produced the trace-element data. R.M. was responsible for drilling the Rosswinkel FR204-201 core and helped with the facies interpretation. J.P., J.F. and P.B.W. contributed to the palaeoecological, biostratigraphic and isotopic interpretations. All authors contributed to the text.

Corresponding author

Correspondence to Bas van de Schootbrugge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 834 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richoz, S., van de Schootbrugge, B., Pross, J. et al. Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nature Geosci 5, 662–667 (2012). https://doi.org/10.1038/ngeo1539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1539

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology