Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Future vulnerability of marine biodiversity compared with contemporary and past changes

Abstract

Many studies have implied significant effects of global climate change on marine life. Setting these alterations into the context of historical natural change has not been attempted so far, however. Here, using a theoretical framework, we estimate the sensitivity of marine pelagic biodiversity to temperature change and evaluate its past (mid-Pliocene and Last Glacial Maximum (LGM)), contemporaneous (1960–2013) and future (2081–2100; 4 scenarios of warming) vulnerability. Our biodiversity reconstructions were highly correlated to real data for several pelagic taxa for the contemporary and the past (LGM and mid-Pliocene) periods. Our results indicate that local species loss will be a prominent phenomenon of climate warming in permanently stratified regions, and that local species invasion will prevail in temperate and polar biomes under all climate change scenarios. Although a small amount of warming under the RCP2.6 scenario is expected to have a minor influence on marine pelagic biodiversity, moderate warming (RCP4.5) will increase by threefold the changes already observed over the past 50 years. Of most concern is that severe warming (RCP6.0 and 8.5) will affect marine pelagic biodiversity to a greater extent than temperature changes that took place between either the LGM or the mid-Pliocene and today, over an area of between 50 (RCP6.0: 46.9–52.4%) and 70% (RCP8.5: 69.4–73.4%) of the global ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large-scale spatial patterns in some biodiversity and climatic properties.
Figure 2: Expected sensitivity of biodiversity to a 2 °C increase in temperature.
Figure 3: Expected vulnerability of biodiversity to changes in annual SST.
Figure 4: Expected past and future mean vulnerability in biodiversity.

Similar content being viewed by others

References

  1. Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the northeast Atlantic. Science 305, 1609–1612 (2004).

    Article  CAS  Google Scholar 

  2. Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).

    Article  CAS  Google Scholar 

  3. Perry, A. I., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    Article  CAS  Google Scholar 

  4. Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganisation of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).

    Article  CAS  Google Scholar 

  5. Fromentin, J. M. & Planque, B. Calanus and environment in the eastern North Atlantic. II. Influence of the North Atlantic Oscillation on C. finmarchicus and C. helgolandicus. Mar. Ecol. Prog. Ser. 134, 111–118 (1996).

    Article  Google Scholar 

  6. Beaugrand, G. Marine Biodiversity, Climatic Variability and Global Change (Routledge, 2015).

    Google Scholar 

  7. Beaugrand, G., Rombouts, I. & Kirby, R. R. Towards an understanding of the pattern of biodiversity in the oceans. Glob. Ecol. Biogeogr. 22, 440–449 (2013).

    Article  Google Scholar 

  8. Beaugrand, G., Goberville, E., Luczak, C. & Kirby, R. R. Marine biological shifts and climate. Proc. R. Soc. B 281, 20133350 (2014).

    Article  Google Scholar 

  9. Beaugrand, G. Unanticipated biological changes and global warming. Mar. Ecol. Prog. Ser. 445, 293–301 (2012).

    Article  Google Scholar 

  10. Beaugrand, G. Theoretical basis for predicting climate-induced abrupt shifts in the oceans. Phil. Trans. R. Soc. B 370, 20130264 (2014).

    Article  Google Scholar 

  11. Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article  Google Scholar 

  12. Gause, G. F. The Struggle for Coexistence (MD: Williams and Wilkins, 1934).

    Google Scholar 

  13. Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).

    Article  Google Scholar 

  14. Lenoir, S., Beaugrand, G. & Lecuyer, E. Modelled spatial distribution of marine fish and projected modifications in the North Atlantic Ocean. Glob. Change Biol. 17, 115–129 (2011).

    Article  Google Scholar 

  15. Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    Article  CAS  Google Scholar 

  16. Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–496 (2014).

    Article  CAS  Google Scholar 

  17. Beaugrand, G., Mackas, D. & Goberville, E. Applying the concept of the ecological niche and a macroecological approach to understand how climate influences zooplankton: Advantages, assumptions, limitations and requirements. Prog. Oceanogr. 111, 75–90 (2013).

    Article  Google Scholar 

  18. Prell, W., Martin, A., Cullen, J. & Trend, M. The Brown University Foraminiferal Data Base IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 1999–027 (NOAA/NGDC Paleoclimatology Program, 1999).

    Google Scholar 

  19. Tittensor, D. T. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article  CAS  Google Scholar 

  20. Rombouts, I. et al. Global latitudinal variations in marine copepod diversity and environmental factors. Proc. R. Soc. B 276, 3053–3062 (2009).

    Article  Google Scholar 

  21. Johannessen, O. M. & Miles, M. W. Critical vulnerabilities of marine and sea ice-based ecosystems in the high Arctic. Reg. Environ. Change 11, S239–S248 (2011).

    Article  Google Scholar 

  22. Philander, S. G. H. El Niño Southern Oscillation phenomena. Nature 302, 295–301 (1983).

    Article  Google Scholar 

  23. Hare, S. R. & Mantua, N. J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47, 103–145 (2000).

    Article  Google Scholar 

  24. Hurrell, J. W., Yochanan, K. & Visbeck, M. The North Atlantic Oscillation. Science 291, 603–605 (2001).

    Article  CAS  Google Scholar 

  25. Hatun, H. et al. Large bio-geographical shifts in the north-eastern Atlantic Ocean: From the subpolar gyre, via plankton, to blue whiting and pilot whales. Prog. Oceanogr. 80, 149–162 (2009).

    Article  Google Scholar 

  26. Reid, P. C. et al. The Continuous Plankton Recorder: Concepts and history, from plankton indicator to undulating recorders. Prog. Oceanogr. 58, 117–173 (2003).

    Article  Google Scholar 

  27. Hiddink, J. G. & Hofstedeter, R. Climate induced increases in species richness of marine fishes. Glob. Change Biol. 14, 453–460 (2008).

    Article  Google Scholar 

  28. Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning and the carbon cycles. Proc. Natl Acad. Sci. USA 107, 10120–10124 (2010).

    Article  CAS  Google Scholar 

  29. Kettle, A. J., Morales-Muñiz, A., Rosello-Izquierdo, E., Heinrich, D. & Vollestad, L. A. Refugia of marine fish in the northeast Atlantic during the last glacial maximum: Concordant assessment from archaeozoology and palaeotemperature reconstructions. Clim. Past 7, 181–201 (2011).

    Article  Google Scholar 

  30. Bigg, G. R. et al. Ice-age survival of Atlantic cod: Agreement between palaecology models and genetics. Proc. R. Soc. B 275, 163–172 (2008).

    Article  Google Scholar 

  31. Monnin, E. et al. Atmospheric CO2 concentrations over the Last Glacial Termination. Science 291, 112–114 (2001).

    Article  CAS  Google Scholar 

  32. Feming, K., Johnston, P., Zwartz, D. & Yokoyama, Y. Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth Planet. Sci. Lett. 163, 327–342 (1998).

    Article  Google Scholar 

  33. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S.et al.) (Cambridge Univ. Press, 2007).

    Google Scholar 

  34. Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).

    Article  Google Scholar 

  35. Dowsett, H. J., Chandler, M. A. & Robinson, M. M. Surface temperatures of the Mid-Pliocene North Atlantic Ocean: Implications for future climate. Phil. Trans. R. Soc. A 367, 69–84 (2009).

    Article  Google Scholar 

  36. Raymo, M. E., Grant, B., Horowitz, M. & Rau, G. H. Mid-Pliocene warmth: Stronger greenhouse and stronger conveyor. Mar. Micropaleontol. 27, 313–326 (1996).

    Article  Google Scholar 

  37. Robinson, M. M. & Dowsett, H. J. Pliocene role in assessing future climate impacts. Eos 89, 500–502 (2008).

    Google Scholar 

  38. Miller, K. G. et al. High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation. Geology 40, 407–410 (2012).

    Article  CAS  Google Scholar 

  39. Zhang, Z. S. et al. Mid-pliocene Atlantic Meridional Overturning Circulation not unlike modern. Clim. Past 9, 1495–1504 (2013).

    Article  Google Scholar 

  40. Srokosz, M. et al. Past, present, and future changes in the Atlantic Meridional Overturning Circulation. Bull. Am. Meteorol. Soc. 93, 1663–1676 (2012).

    Article  Google Scholar 

  41. Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    Article  CAS  Google Scholar 

  42. Crisp, M. D. et al. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).

    Article  CAS  Google Scholar 

  43. Overpeck, J., Whitlock, C. & Huntley, B. in Paleoclimate, Global Change and the Future (eds Alverson, K. D., Bradley, R. S. & Pedersen, T. F.) 81–111 (Springer, 2003).

    Book  Google Scholar 

  44. Rombouts, I. et al. A multivariate approach to large-scale variation in marine planktonic copepod diversity and its environmental correlates. Limnol. Oceanogr. 55, 2219–2229 (2010).

    Article  Google Scholar 

  45. Pimm, S. L., Russell, G. F., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

    Article  CAS  Google Scholar 

  46. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  47. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    Article  CAS  Google Scholar 

  48. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  49. McIntyre, A. et al. Glacial North Atlantic 18,000 years ago: A climap reconstruction. Geol. Soc. Am. Mem. 145, 43–76 (1976).

    Google Scholar 

  50. Paul, A. & Schäfer-Neth, C. Modeling the water masses of the Atlantic Ocean at the Last Glacial Maximum. Paleoceanography 18, 1058 (2003).

    Article  Google Scholar 

  51. Pflaumann, U. et al. Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography 18, 1065 (2003).

    Article  Google Scholar 

  52. Dowsett, H. J. & Poore, R. Z. A new planktic foraminifer transfer function for estimating Pliocene–Holocene paleoceanographic conditions in the North Atlantic. Mar. Micropaleontol. 16, 1–23 (1990).

    Article  Google Scholar 

  53. Dowsett, H., Robinson, M. & Foley, K. Pliocene three-dimensional global ocean temperature reconstruction. Clim. Past 5, 769–783 (2009).

    Article  Google Scholar 

  54. Dowsett, H., Robinson, M., Stoll, D. & Foley, K. Mid-Piacenzian mean annual sea surface temperature analysis for data-model comparisons. Stratigraphy 7, 189–198 (2010).

    Google Scholar 

  55. Yasuhara, M. et al. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Dryad Digital Repository 10.5061/dryad.dc139 (2012).

  56. Beaugrand, G., Reid, P. C., Ibañez, F. & Planque, P. Biodiversity of North Atlantic and North Sea calanoid copepods. Mar. Ecol. Prog. Ser. 204, 299–303 (2000).

    Article  Google Scholar 

  57. Valentine, J. W. in Marine Macroecology (eds Witman, J. D. & Roy, K.) Ch. 1, 3–28 (The Univ. Chicago Press, 2009).

    Book  Google Scholar 

  58. Hutchinson, G. E. An Introduction to Population Ecology (Yale Univ. Press, 1978).

    Google Scholar 

  59. Stevens, G. S. The latitudinal gradient in geographic range: How so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Article  Google Scholar 

  60. Beaugrand, G., Edwards, M., Brander, K., Luczak, C. & Ibañez, F. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecol. Lett. 11, 1157–1168 (2008).

    Article  Google Scholar 

  61. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nature Clim. Change 1–5 (2012).

  62. Mackas, D. L. et al. Changing zooplankton seasonality in a changing ocean: Comparing time series of zooplankton phenology. Prog. Oceanogr. 97–100, 31–62 (2012).

    Article  Google Scholar 

  63. Luczak, C., Beaugrand, G., Jaffré, M. & Lenoir, S. Climate change impact on Balearic Shearwater through a trophic cascade. Biol. Lett. 7, 702–705 (2011).

    Article  CAS  Google Scholar 

  64. Ter Braak, C. J. F. Unimodal Models to Relate Species to Environment (DLO-Agricultural Mathematics Group, 1996).

    Google Scholar 

  65. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: Biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

    Article  CAS  Google Scholar 

  66. Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, 2621–2626 (2008).

    Article  CAS  Google Scholar 

  67. Hurrell, J. W. & Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 78, 28–41 (2009).

    Article  Google Scholar 

  68. Enfield, D. B., Mestas-Nunez, A. M. & Trimble, P. J. The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 28, 2077–2080 (2001).

    Article  Google Scholar 

  69. Beaugrand, G. & Ibañez, F. Spatial dependence of pelagic diversity in the North Atlantic Ocean. Mar. Ecol. Prog. Ser. 232, 197–211 (2002).

    Article  Google Scholar 

  70. Rangel, T. F. L. V. B., Diniz-Filho, J. A. F. & Colwell, R. K. Species richness and evolutionary niche dynamics: A spatial pattern-oriented simulation experiment. Am. Nat. 170, 602–616 (2007).

    Article  Google Scholar 

  71. Helaouët, P., Beaugrand, G. & Reid, P. C. Macrophysiology of Calanus finmarchicus in the North Atlantic Ocean. Prog. Oceanogr. 91, 217–228 (2011).

    Article  Google Scholar 

  72. Beaugrand, G., Brander, K. M., Lindley, J. A., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was part of the regional project BIODIMAR and was also supported by the ‘Centre National de la Recherche Scientifique’ (CNRS) and the Research Programme CPER CLIMIBIO (Nord-Pas de Calais). We thank past and present SAHFOS workers and the international funding consortium supporting the CPR survey. Their dedication has made this unique time series possible. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. We also thank D. Tittensor (Dalhousie University) and I. Rombouts (Lille University) for providing data sets on some marine taxonomic groups.

Author information

Authors and Affiliations

Authors

Contributions

G.B. conceived the study; G.B., V.R. and E.G. compiled the data; G.B. analysed the data. G.B., R.R.K., E.G., M.E. and V.R. discussed the results and wrote the paper.

Corresponding authors

Correspondence to Grégory Beaugrand or Richard R. Kirby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaugrand, G., Edwards, M., Raybaud, V. et al. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nature Clim Change 5, 695–701 (2015). https://doi.org/10.1038/nclimate2650

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2650

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing