Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The identification of cutin synthase: formation of the plant polyester cutin

Abstract

A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol. CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD1 is a GDSL family protein that localizes to the nascent cuticle.
Figure 2: The identification of 2-MHG in the soluble surface lipids of cd1 fruit.
Figure 3: Acyltransferase activity of CD1.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Edwards, D. New Phytol. 125, 225–247 (1993).

    Article  Google Scholar 

  2. Nawrath, C. Curr. Opin. Plant Biol. 9, 281–287 (2006).

    Article  CAS  Google Scholar 

  3. Heredia, A. et al. Biointerphases 4, P1–P3 (2009).

    Article  Google Scholar 

  4. Pollard, M., Beisson, F., Li, Y. & Ohlrogge, J.B. Trends Plant Sci. 13, 236–246 (2008).

    Article  CAS  Google Scholar 

  5. Isaacson, T. et al. Plant J. 60, 363–377 (2009).

    Article  CAS  Google Scholar 

  6. Akoh, C.C., Lee, G.C., Liaw, Y.C., Huang, T.H. & Shaw, J.F. Prog. Lipid Res. 43, 534–552 (2004).

    Article  CAS  Google Scholar 

  7. Volokita, M., Rosilio-Brami, T., Rivkin, N. & Zik, M. Mol. Biol. Evol. 28, 551–565 (2011).

    Article  CAS  Google Scholar 

  8. Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R. & Jamet, E. BMC Plant Biol. 8, 94 (2008).

    Article  Google Scholar 

  9. Matas, A.J. et al. Plant Cell 23, 3893–3910 (2011).

    Article  CAS  Google Scholar 

  10. Mintz-Oron, S. et al. Plant Physiol. 147, 823–851 (2008).

    Article  CAS  Google Scholar 

  11. Reina, J.J., Guerrero, C. & Heredia, A. J. Exp. Bot. 58, 2717–2731 (2007).

    Article  CAS  Google Scholar 

  12. Yeats, T.H. et al. J. Exp. Bot. 61, 3759–3771 (2010).

    Article  CAS  Google Scholar 

  13. Baker, E.A., Bukovac, M.J. & Hunt, G.M. in The Plant Cuticle (eds. Cutler, D.F., Alvin, K.L. & Price, C.E.) 33–44 (Academic Press, London, 1982).

  14. Yang, W. et al. Proc. Natl. Acad. Sci. USA 107, 12040–12045 (2010).

    Article  CAS  Google Scholar 

  15. Graça, J., Schreiber, L., Rodrigues, J. & Pereira, H. Phytochemistry 61, 205–215 (2002).

    Article  Google Scholar 

  16. Jetter, R., Kunst, L. & Samuels, A.L. in Biology of the Plant Cuticle (eds. Riederer, M. & Müller, C.) 145–181 (Blackwell, Oxford, 2006).

  17. Li, Y., Beisson, F., Ohlrogge, J. & Pollard, M. Plant Physiol. 144, 1267–1277 (2007).

    Article  CAS  Google Scholar 

  18. Graça, J. & Lamosa, P. J. Agric. Food Chem. 58, 9666–9674 (2010).

    Article  Google Scholar 

  19. Osman, S.F., Irwin, P., Fett, W.F., O'Connor, J.V. & Parris, N. J. Agric. Food Chem. 47, 799–802 (1999).

    Article  CAS  Google Scholar 

  20. Jonas, A. Biochim. Biophys. Acta 1529, 245–256 (2000).

    Article  CAS  Google Scholar 

  21. Croteau, R. & Kolattukudy, P.E. Biochemistry 13, 3193–3202 (1974).

    Article  CAS  Google Scholar 

  22. Panikashvili, D., Shi, J.X., Schreiber, L. & Aharoni, A. Plant Physiol. 151, 1773–1789 (2009).

    Article  CAS  Google Scholar 

  23. Shi, J.X. et al. PLoS Genet. 7, e1001388 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Lomonossoff (John Innes Centre) and Plant Bioscience Limited for the pEAQ vector, M. Toso for help with transmission electron microscopy, S. Zhang and B. Sherwood for assistance with MALDI-TOF MS and M. Pollard and K. Niklas for critical discussion. This work was supported by grants from the US National Science Foundation (Plant Genome Program; DBI-0606595), the United States–Israel Binational Agricultural Research and Development Fund (IS-4234-09); the US Department of Agriculture Cooperative State Research, Education and Extension Service (2011-04197); and the Danish Council for Strategic Research (10-093465). T.H.Y. was supported in part by a US National Institutes of Health Chemistry-Biology Interface Training Grant (T32 GM008500).

Author information

Authors and Affiliations

Authors

Contributions

T.H.Y. purified recombinant protein and performed chemical analysis of soluble surface lipids and acyltransferase assays. L.B.B.M. performed gene and protein expression experiments and cutin analysis. H.M.-F.V. and M.H.C. synthesized 2-MHG. T.I. identified and performed initial characterization and rough mapping of the mutant. Y.H. and L.Z. performed fine genetic mapping experiments and constructed the transgenic complementation vector. A.J.M. performed the tissue-specific gene expression experiments. G.J.B. conducted light microscopy experiments. L.B.B.M. and D.S.D. performed immunolocalization experiments. T.H.Y., L.B.B.M. and J.K.C.R. designed the study, analyzed the data and wrote the paper.

Corresponding author

Correspondence to Jocelyn K C Rose.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeats, T., Martin, L., Viart, HF. et al. The identification of cutin synthase: formation of the plant polyester cutin. Nat Chem Biol 8, 609–611 (2012). https://doi.org/10.1038/nchembio.960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing