Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis enables identification of the cellular target of leucascandrolide A and neopeltolide

Abstract

Leucascandrolide A and neopeltolide are structurally homologous marine natural products that elicit potent antiproliferative profiles in mammalian cells and yeast. The scarcity of naturally available material has been a significant barrier to their biochemical and pharmacological evaluation. We developed practical synthetic access to this class of natural products that enabled the determination of their mechanism of action. We demonstrated effective cellular growth inhibition in yeast, which was substantially enhanced by substituting glucose with galactose or glycerol. These results, along with genetic analysis of determinants of drug sensitivity, suggested that leucascandrolide A and neopeltolide may inhibit mitochondrial ATP synthesis. Evaluation of the activity of the four mitochondrial electron transport chain complexes in yeast and mammalian cells revealed cytochrome bc1 complex as the principal cellular target. This result provided the molecular basis for the potent antiproliferative activity of this class of marine macrolides, thus identifying them as new biochemical tools for investigation of eukaryotic energy metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Effect of analog 3 on S. cerevisiae growth.
Figure 4: Effect of leucascandrolide A analog 3 and neopeltolide on S. cerevisiae on agar plates.
Figure 5: Inhibition of ATP production in A549 cells in response to treatment with neopeltolide and leucascandrolide analog 3, in the presence or absence of 2-DG.
Figure 6: Effect of leucascandrolide analog 3 and neopeltolide on cellular respiration, NADH consumption and activity of cytochrome bc1 complex.

Similar content being viewed by others

References

  1. Paterson, I. & Anderson, E.A. The Renaissance of natural products as drug candidates. Science 310, 451–453 (2005).

    Article  Google Scholar 

  2. D'Ambrosio, M., Guerriero, A., Debitus, C. & Pietra, F. Leucascandrolide A, a new type of macrolide: the first powerfully bioactive metabolite of calcareous sponges Leucascandra caveolata, a new genus from the Coral Sea. Helv. Chim. Acta 79, 51–60 (1996).

    Article  CAS  Google Scholar 

  3. Wright, A.E. et al. Neopeltolide, A macrolide from a Lithistid sponge of the family Neopeltidae. J. Nat. Prod. 70, 412–416 (2007).

    Article  CAS  Google Scholar 

  4. Hornberger, K.R., Hamblett, C.L. & Leighton, J.L. Total synthesis of leucascandrolide A. J. Am. Chem. Soc. 122, 12894–12895 (2000).

    Article  CAS  Google Scholar 

  5. Kopecky, D.J. & Rychnovsky, S.D. Mukaiyama aldol-Prins cyclization cascade reaction: formal total synthesis of leucascandrolide A. J. Am. Chem. Soc. 123, 8420–8421 (2001).

    Article  CAS  Google Scholar 

  6. Wang, Y., Janjic, J. & Kozmin, S.A. Synthesis of leucascandrolide A via a spontaneous macrolactolization. J. Am. Chem. Soc. 124, 13670–13671 (2002).

    Article  CAS  Google Scholar 

  7. Fettes, A. & Carreira, E.M. Total synthesis of leucascandrolide A. Angew. Chem. Int. Edn Engl. 41, 4098–4101 (2002).

    Article  CAS  Google Scholar 

  8. Paterson, I. & Tudge, M. Stereocontrolled total synthesis of (+)-leucascandrolide A. Angew. Chem. Int. Edn Engl. 42, 343–347 (2003).

    Article  CAS  Google Scholar 

  9. Wipf, P. & Reeves, J.T. A formal total synthesis of leucascandrolide A. Chem. Commun. (Camb) 18, 2066–2067 (2002).

    Article  Google Scholar 

  10. Williams, D.R., Plummer, S.V. & Patnaik, S. Formal synthesis of leucascandrolide A. Angew. Chem. Int. Edn Engl. 42, 3934–3938 (2003).

    Article  CAS  Google Scholar 

  11. Crimmins, M.T. & Siliphaivanh, P. Enantioselective total synthesis of (+)-leucascandrolide A macrolactone. Org. Lett. 5, 4641–4644 (2003).

    Article  CAS  Google Scholar 

  12. Su, Q. & Panek, J.S. Total synthesis of (+)-leucascandrolide A. Angew. Chem. Int. Edn Engl. 44, 1223–1225 (2005).

    Article  CAS  Google Scholar 

  13. Jung, H.H., Seiders, J.R. & Floreancig, P.E. Oxidative cleavage in the construction of complex molecules: synthesis of the leucascandrolide A macrolactone. Angew. Chem. Int. Edn Engl. 46, 8464–8467 (2007).

    Article  CAS  Google Scholar 

  14. Ferrié, L., Reymond, S., Capdevielle, P. & Cossy, J. Formal chemoselective synthesis of leucascandrolide A. Org. Lett. 9, 2461–2464 (2007).

    Article  Google Scholar 

  15. Youngsaye, W., Lowe, J.T., Pohlki, F., Ralifo, P. & Panek, J.S. Total synthesis and stereochemical reassignment of (+)-neopeltolide. Angew. Chem. Int. Edn Engl. 46, 9211–9214 (2007).

    Article  CAS  Google Scholar 

  16. Custar, D.W., Zabawa, T.P. & Scheidt, K.A. Total synthesis and structural revision of the marine macrolide neopeltolide. J. Am. Chem. Soc. 130, 804–805 (2008).

    Article  CAS  Google Scholar 

  17. Wang, Y., Janjic, J. & Kozmin, S.A. Synthesis of leucascandrolide A. Pure Appl. Chem. 77, 1161–1169 (2005).

    Article  CAS  Google Scholar 

  18. Kozmin, S.A. Efficient stereochemical relay en route to leucascandrolide A. Org. Lett. 3, 755–758 (2001).

    Article  CAS  Google Scholar 

  19. Janjic, J. Leucascandrolide A: Synthesis and Studies toward Identification of the Biological Target. Thesis, University of Chicago (2006).

    Google Scholar 

  20. Paterson, I., Gibson, K.R. & Oballa, R.M. Remote, 1,5-Anti stereoinduction in the boron-mediated aldol reactions of β-oxygenated methyl ketones. Tetrahedr. Lett. 37, 8585–8588 (1996).

    Article  CAS  Google Scholar 

  21. Evans, D.A., Coleman, P.J. & Côté, B. 1,5-Asymmetric induction in methyl ketone aldol addition reactions. J. Org. Chem. 62, 788–789 (1997).

    Article  CAS  Google Scholar 

  22. Chen, K.-M., Hardtmann, G.E., Prasad, K., Repic, O. & Shapiro, M.J. 1,3-syn-diastereoselective reduction of β-hydroxyketones utilizing alkoxydialkylboranes. Tetrahedr. Lett. 28, 155–158 (1987).

    Article  CAS  Google Scholar 

  23. Giaever, G. et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. USA 101, 793–798 (2004).

    Article  CAS  Google Scholar 

  24. Baetz, K. et al. Yeast genome-wide drug-induced haploinsufficiency screen to determine drug mode of action. Proc. Natl. Acad. Sci. USA 101, 4525–4530 (2004).

    Article  CAS  Google Scholar 

  25. Celenza, J.L., Eng, F.J. & Carlson, M. Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol. Cell. Biol. 9, 5045–5054 (1989).

    Article  CAS  Google Scholar 

  26. Hardie, D.G., Carling, D. & Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821–855 (1998).

    Article  CAS  Google Scholar 

  27. Nagata, I., Furuya, E., Yoshida, Y., Kanaseki, T. & Tagawa, K. Development of mitochondrial membranes in anaerobically grown yeast cells. J. Biochem. 78, 1353–1364 (1975).

    Article  CAS  Google Scholar 

  28. Brown, J. Effect of 2-deoxyglucose on carbohydrate metabolism: review of the literature and studies in rats. Metabolism 11, 1098–1112 (1962).

    CAS  PubMed  Google Scholar 

  29. Linnett, P.E. & Beechey, R.B. Inhibitors of the ATP synthase system. Methods Enzymol. 55, 472–518 (1979).

    Article  CAS  Google Scholar 

  30. Haytler, P.G. & Prichard, W.W. A new class of uncoupling agents – carbonyl cyanide phenylhydrazones. Biochem. Biophys. Res. Commun. 7, 272–275 (1962).

    Article  Google Scholar 

  31. Wallace, K.B. & Starkov, A.A. Mitochondrial targets of drug toxicity. Annu. Rev. Pharmacol. Toxicol. 40, 353–388 (2000).

    Article  CAS  Google Scholar 

  32. Xia, D. et al. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277, 60–66 (1997).

    Article  CAS  Google Scholar 

  33. Iwata, S. et al. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 64–71 (1998).

    Article  CAS  Google Scholar 

  34. Zhang, Z. et al. Electron transfer by domain movement in cytochrome bc1 . Nature 392, 677–684 (1998).

    Article  CAS  Google Scholar 

  35. Trumpower, B.L. Cytochrome bc1 complexes of microorganisms. Microbiol. Rev. 54, 101–129 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mitchell, P. Protonmotive redox mechanism of the cytochrome bc-1 complex of the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett. 56, 1–6 (1975).

    Article  CAS  Google Scholar 

  37. Trumpower, B.L. The protonmotive Q cycle. J. Biol. Chem. 265, 11409–11412 (1990).

    CAS  PubMed  Google Scholar 

  38. Von Jagow, G., Ljungdahl, P.O., Graf, P., Ohnishi, T. & Trumpower, B.L. An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc1 complex. J. Biol. Chem. 259, 6318–6326 (1984).

    CAS  PubMed  Google Scholar 

  39. Thierbach, G. & Reichenbach, H. Myxothiazol, a new inhibitor of the cytochrome bc1 segment of the respiratory chain. Biochim. Biophys. Acta 638, 282–289 (1981).

    Article  CAS  Google Scholar 

  40. Thierbach, G., Kunze, B., Reichenbach, H. & Höfle, G. The mode of action of stigmatellin, a new inhibitor of the cytochrome b-c1 segment of the respiratory chain. Biochim. Biophys. Acta 765, 227–235 (1984).

    Article  CAS  Google Scholar 

  41. Bowyer, J.R., Edwards, C.A., Ohnishi, T. & Trumpower, B.L. An analogue of ubiquinone which inhibits respiration by binding to the iron-sulfur protein of the cytochrome bc1 segment of mitochondrial respiratory chain. J. Biol. Chem. 257, 8321–8330 (1982).

    CAS  PubMed  Google Scholar 

  42. Ohnishi, T. & Trumpower, B.L. Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate-cytochrome c reductase complex. J. Biol. Chem. 255, 3278–3284 (1980).

    CAS  PubMed  Google Scholar 

  43. Gutierrez-Cirlos, E.B., Merbitz-Zahradnik, T. & Trumpower, B.L. Inhibition of the yeast cytochrome bc1 complex by ilicicolin H, a novel inhibitor that acts at the Qn site of the bc1 complex. J. Biol. Chem. 279, 8708–8714 (2004).

    Article  CAS  Google Scholar 

  44. Warburg, O. On the origin on cancer cells. Science 123, 309–314 (1956).

    Article  CAS  Google Scholar 

  45. DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G. & Thompson, C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).

    Article  CAS  Google Scholar 

  46. Pelicano, H., Martin, D.S., Xu, R.-H. & Hunag, P. Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633–4646 (2006).

    Article  CAS  Google Scholar 

  47. Liu, H., Hu, Y.P., Savaraj, N., Priebe, W. & Lampidis, T.J. Hypersensitization of tumor cells to glycolytic inhibitors. Biochemistry 40, 5542–5547 (2001).

    Article  CAS  Google Scholar 

  48. Maher, J.C., Krishan, A. & Lampidis, T.J. Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-d-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother. Pharmacol. 53, 116–122 (2004).

    Article  CAS  Google Scholar 

  49. Smith, A.L. Preparation, properties, and conditions for assay of mitochondria: slaughterhouse material, small scale. Methods Enzymol. 10, 81–86 (1967).

    Article  CAS  Google Scholar 

  50. Berry, E.A., Huang, L.S. & DeRose, V.J. Ubiquinol-cytochrome c oxidoreductase of higher plants. Isolation and characterization of the bc1 complex from potato tuber mitochondria. J. Biol. Chem. 266, 9064–9077 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Cancer Institute (R01 CA93457 to S.A.K.) and the US National Institutes of Health (R01 GM60443 to S.J.K.). S.A.K. thanks the Alfred P. Sloan Foundation, the Dreyfus Foundation, Amgen and GlaxoSmithKline for additional financial support. S.J.K. was a Leukemia & Lymphoma Society Scholar. J.J. acknowledges the support of Burroughs Wellcome Fund Interfaces 1001774.

Author information

Authors and Affiliations

Authors

Contributions

O.A.U., J.J., P.T.S., S.J.K. and S.A.K. planned the project. S.S.S. contributed to experiments depicted in Figure 6d. M.S. contributed to the synthesis shown in Scheme 2. O.A.U. and J.J. performed all other experiments. O.A.U., S.J.K. and S.A.K. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Sergey A Kozmin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 1301 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulanovskaya, O., Janjic, J., Suzuki, M. et al. Synthesis enables identification of the cellular target of leucascandrolide A and neopeltolide. Nat Chem Biol 4, 418–424 (2008). https://doi.org/10.1038/nchembio.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing