Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication

Abstract

Lens epithelium–derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase that promotes viral integration by tethering the preintegration complex to the chromatin. By virtue of its crucial role in the early steps of HIV replication, the interaction between LEDGF/p75 and integrase represents an attractive target for antiviral therapy. We have rationally designed a series of 2-(quinolin-3-yl)acetic acid derivatives (LEDGINs) that act as potent inhibitors of the LEDGF/p75-integrase interaction and HIV-1 replication at submicromolar concentration by blocking the integration step. A 1.84-Å resolution crystal structure corroborates the binding of the inhibitor in the LEDGF/p75-binding pocket of integrase. Together with the lack of cross-resistance with two clinical integrase inhibitors, these findings define the 2-(quinolin-3-yl)acetic acid derivatives as the first genuine allosteric HIV-1 integrase inhibitors. Our work demonstrates the feasibility of rational design of small molecules inhibiting the protein-protein interaction between a viral protein and a cellular host factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Virtual screening of small molecules that inhibit the LEDGF/p75-IN interaction.
Figure 2: Resistance selection to 6.
Figure 3: Analysis of the mechanism of action of 6 by Q-PCR.
Figure 4: Crystal structure of 6 bound to the LEDGF/p75 binding pocket of the IN-core.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Summa, V. et al. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J. Med. Chem. 51, 5843–5855 (2008).

    Article  CAS  Google Scholar 

  2. Murray, J.M. et al. Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase. AIDS 21, 2315–2321 (2007).

    Article  CAS  Google Scholar 

  3. Malet, I. et al. Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob. Agents Chemother. 52, 1351–1358 (2008).

    Article  CAS  Google Scholar 

  4. Van Maele, B., Busschots, K., Vandekerckhove, L., Christ, F. & Debyser, Z. Cellular co-factors of HIV-1 integration. Trends Biochem. Sci. 2, 98–105 (2006).

    Article  Google Scholar 

  5. Greene, W.C. et al. Novel targets for HIV therapy. Antiviral Res. 80, 251–265 (2008).

    Article  CAS  Google Scholar 

  6. Ganapathy, V., Daniels, T. & Casiano, C.A. LEDGF/p75: a novel nuclear autoantigen at the crossroads of cell survival and apoptosis. Autoimmun. Rev. 2, 290–297 (2003).

    Article  CAS  Google Scholar 

  7. Ge, H., Si, Y. & Roeder, R.G. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J. 17, 6723–6729 (1998).

    Article  CAS  Google Scholar 

  8. Singh, D.P. et al. Lens epithelium-derived growth factor: effects on growth and survival of lens epithelial cells, keratinocytes, and fibroblasts. Biochem. Biophys. Res. Commun. 267, 373–381 (2000).

    Article  CAS  Google Scholar 

  9. Cherepanov, P. et al. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278, 372–381 (2003).

    Article  CAS  Google Scholar 

  10. De Rijck, J. et al. Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication. J. Virol. 80, 11498–11509 (2006).

    Article  CAS  Google Scholar 

  11. Emiliani, S. et al. Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J. Biol. Chem. 280, 25517–25523 (2005).

    Article  CAS  Google Scholar 

  12. Hombrouck, A. et al. Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV. PLoS Pathog. 3, e47 (2007).

    Article  Google Scholar 

  13. Llano, M. et al. An essential role for LEDGF/p75 in HIV integration. Science 314, 461–464 (2006).

    Article  CAS  Google Scholar 

  14. Shun, M.C. et al. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 21, 1767–1778 (2007).

    Article  CAS  Google Scholar 

  15. Vandekerckhove, L. et al. Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J. Virol. 80, 1886–1896 (2006).

    Article  CAS  Google Scholar 

  16. Busschots, K. et al. Identification of the LEDGF/p75 binding site in HIV-1 integrase. J. Mol. Biol. 365, 1480–1492 (2007).

    Article  CAS  Google Scholar 

  17. Shun, M.C., Daigle, J.E., Vandegraaff, N. & Engelman, A. Wild-type levels of human immunodeficiency virus type 1 infectivity in the absence of cellular emerin protein. J. Virol. 81, 166–172 (2007).

    Article  CAS  Google Scholar 

  18. Maertens, G., Cherepanov, P., Debyser, Z., Engelborghs, Y. & Engelman, A. Identification and characterization of a functional nuclear localization signal in the HIV-1 integrase interactor LEDGF/p75. J. Biol. Chem. 279, 33421–33429 (2004).

    Article  CAS  Google Scholar 

  19. Vanegas, M. et al. Identification of the LEDGF/p75 HIV-1 integrase-interaction domain and NLS reveals NLS-independent chromatin tethering. J. Cell Sci. 118, 1733–1743 (2005).

    Article  CAS  Google Scholar 

  20. Ciuffi, A. et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11, 1287–1289 (2005).

    Article  CAS  Google Scholar 

  21. Cherepanov, P., Ambrosio, A.L., Rahman, S., Ellenberger, T. & Engelman, A. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc. Natl. Acad. Sci. USA 102, 17308–17313 (2005).

    Article  CAS  Google Scholar 

  22. Molteni, V. et al. Identification of a small-molecule binding site at the dimer interface of the HIV integrase catalytic domain. Acta Crystallogr. D Biol. Crystallogr. 57, 536–544 (2001).

    Article  CAS  Google Scholar 

  23. Maignan, S., Guilloteau, J.P., Zhou-Liu, Q., Clement-Mella, C. & Mikol, V. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J. Mol. Biol. 282, 359–368 (1998).

    Article  CAS  Google Scholar 

  24. Jones, G., Willett, P., Glen, R.C., Leach, A.R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997).

    Article  CAS  Google Scholar 

  25. Gohlke, H., Hendlich, M. & Klebe, G. Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295, 337–356 (2000).

    Article  CAS  Google Scholar 

  26. Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. & Mee, R.P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des. 11, 425–445 (1997).

    Article  CAS  Google Scholar 

  27. Bartholomeeusen, K. et al. Differential interaction of HIV-1 integrase and JPO2 with the C terminus of LEDGF/p75. J. Mol. Biol. 372, 407–421 (2007).

    Article  CAS  Google Scholar 

  28. Bartholomeeusen, K. et al. Lens epithelium derived growth factor/p75 interacts with the transposase derived DDE domain of pogZ. J. Biol. Chem. 284, 11467–11477 (2009).

    Article  CAS  Google Scholar 

  29. Maertens, G.N., Cherepanov, P. & Engelman, A. Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin. J. Cell Sci. 119, 2563–2571 (2006).

    Article  CAS  Google Scholar 

  30. Sato, M. et al. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J. Med. Chem. 49, 1506–1508 (2006).

    Article  CAS  Google Scholar 

  31. Debyser, Z., Cherepanov, P., Van Maele, B., De Clercq, E. & Witvrouw, M. In search of authentic inhibitors of HIV-1 integration. Antivir. Chem. Chemother. 13, 1–15 (2002).

    Article  CAS  Google Scholar 

  32. Hazuda, D.J. Inhibitors of human immunodeficiency virus type I integration. Curr. Opin. HIV AIDS 1, 212–217 (2006).

    Article  Google Scholar 

  33. Johnson, V.A. et al. Update of the drug resistance mutations in HIV-1: 2007. Top. HIV Med. 15, 119–125 (2007).

    PubMed  Google Scholar 

  34. Hazuda, D.J. et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287, 646–650 (2000).

    Article  CAS  Google Scholar 

  35. Dyda, F. et al. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266, 1981–1986 (1994).

    Article  CAS  Google Scholar 

  36. Arkin, M.R. & Wells, J.A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3, 301–317 (2004).

    Article  CAS  Google Scholar 

  37. Ryan, D.P. & Matthews, J.M. Protein-protein interactions in human disease. Curr. Opin. Struct. Biol. 15, 441–446 (2005).

    Article  CAS  Google Scholar 

  38. Vassilev, L.T. MDM2 inhibitors for cancer therapy. Trends Mol. Med. 13, 23–31 (2007).

    Article  CAS  Google Scholar 

  39. Chi, S.W. et al. Structural details on mdm2-p53 interaction. J. Biol. Chem. 280, 38795–38802 (2005).

    Article  CAS  Google Scholar 

  40. Kussie, P.H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  Google Scholar 

  41. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  Google Scholar 

  42. Du, L. et al. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75. Biochem. Biophys. Res. Commun. 375, 139–144 (2008).

    Article  CAS  Google Scholar 

  43. De Luca, L. et al. Pharmacophore-based discovery of small-molecule inhibitors of protein-protein interactions between HIV-1 integrase and cellular cofactor LEDGF/p75. Chem. Med. Chem. 4, 1311–1316 (2009).

    Article  CAS  Google Scholar 

  44. Yu, F. et al. HIV-1 integrase preassembled on donor DNA is refractory to activity stimulation by LEDGF/p75. Biochemistry 46, 2899–2908 (2007).

    Article  CAS  Google Scholar 

  45. Tsantrizos, Y.S. et al. Inhibitors of human immunodeficiency virus replication. PCT CA2007, (2007).

  46. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994.).

  47. Delelis, O., et al. The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation. Nucleic Acids Res. 37, 1193–1201 (2009).

    Article  CAS  Google Scholar 

  48. Larder, B.A. & Kemp, S.D. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246, 1155–1158 (1989).

    Article  CAS  Google Scholar 

  49. Nunberg, J.H. et al. Viral resistance to human immunodeficiency virus type 1-specific pyridinone reverse transcriptase inhibitors. J. Virol. 65, 4887–4892 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. de Vreese, K. et al. The molecular target of bicyclams, potent inhibitors of human immunodeficiency virus replication. J. Virol. 70, 689–696 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge A. Calleja for performing analytical chemistry on the compounds, M. Michiels for macrophage and integrase assays and L. Desender for performing large-scale protein purifications. We thank A. Jonckheer for information and communication technology support. X-ray diffraction data collection was done at the X06DA beamline of the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland. We thank R. Clayton of Tibotec for providing raltegravir and elvitegravir as well as HXB2D-INN155H E92Q Q148H. Research was funded by the CellCoVir SBO grant (60813) of the Flemish Agentschap voor Innovatie door Wetenschap en Technologie, the FWO grant G.0530.08, the EC grant THINC (HEALTH-F3-2008-201032), the Research Fund and the Industrieel Onderzoeksfonds Program of the K.U. Leuven. A.V. is supported by a grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders. F.C. is funded by an Industrieel Onderzoeksfonds mandate, and B.A.D. is funded by a Bijzonder Onderzoeksfonds-PhD scholarship for international cooperation with non-EEA countries outside the EEA.

Author information

Authors and Affiliations

Authors

Contributions

F.C. established the specific high-throughput screening tools for the LEDGF/p75-IN interaction, purified proteins and designed and guided the biological characterization of the compounds; A.V. designed and executed the modeling strategy; A.M. and P.C. guided and coordinated the medicinal chemistry; D.M. and D.B. performed organic synthesis; S.N. performed the cocrystallization studies; B.A.D. performed Q-PCR analysis, resistance selection and, together with B.V.R., antiviral testing; B.V.R. performed antiviral testing in T cells and primary cells; N.J.V.d.V. performed AlphaScreen assays; S.V.S. guided the crystallography; M.D.M. guided the modeling; Z.D. coordinated the project and designed experiments; F.C. and Z.D. prepared the manuscript.

Corresponding author

Correspondence to Zeger Debyser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 596 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christ, F., Voet, A., Marchand, A. et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6, 442–448 (2010). https://doi.org/10.1038/nchembio.370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.370

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research