Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Atomic-resolution monitoring of protein maturation in live human cells by NMR

Abstract

We use NMR directly in live human cells to describe the complete post-translational maturation process of human superoxide dismutase 1 (SOD1). We follow, at atomic resolution, zinc binding, homodimer formation and copper uptake, and discover that copper chaperone for SOD1 oxidizes the SOD1 intrasubunit disulfide bond through both copper-dependent and copper-independent mechanisms. Our approach represents a new strategy for structural investigation of endogenously expressed proteins in a physiological (cellular) environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zn(II) added to the culture medium promotes binding of one Zn2+ ion per apo-SOD1 subunit in the cytoplasm.
Figure 2: Cu(II) addition to the culture medium induces Cu(I) binding to a fraction of cytoplasmic SOD1.
Figure 3: The redox state of SOD1 is influenced by both copper binding and the presence of CCS.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Reckel, S., Hänsel, R., Löhr, F. & Dötsch, V. Prog. Nucl. Magn. Reson. Spectrosc. 51, 91–101 (2007).

    Article  CAS  Google Scholar 

  2. Burz, D.S. & Shekhtman, A. PLoS ONE 3, e2571 (2008).

    Article  Google Scholar 

  3. Inomata, K. et al. Nature 458, 106–109 (2009).

    Article  CAS  Google Scholar 

  4. Ogino, S. et al. J. Am. Chem. Soc. 131, 10834–10835 (2009).

    Article  CAS  Google Scholar 

  5. Selenko, P. et al. Nat. Struct. Mol. Biol. 15, 321–329 (2008).

    Article  CAS  Google Scholar 

  6. Culotta, V.C., Yang, M. & O'Halloran, T.V. Biochim. Biophys. Acta 1763, 747–758 (2006).

    Article  CAS  Google Scholar 

  7. Michiels, C., Raes, M., Toussaint, O. & Remacle, J. Free Radic. Biol. Med. 17, 235–248 (1994).

    Article  CAS  Google Scholar 

  8. Lindberg, M.J., Tibell, L. & Oliveberg, M. Proc. Natl. Acad. Sci. USA 99, 16607–16612 (2002).

    Article  CAS  Google Scholar 

  9. Banci, L. et al. Proc. Natl. Acad. Sci. USA 104, 11263–11267 (2007).

    Article  CAS  Google Scholar 

  10. Aricescu, A.R., Lu, W. & Jones, E.Y. Acta Crystallogr. D Biol. Crystallogr. 62, 1243–1250 (2006).

    Article  Google Scholar 

  11. Chang, L.Y., Slot, J.W., Geuza, H.J. & Crapo, J.D. J. Cell Biol. 107, 2169–2179 (1988).

    Article  CAS  Google Scholar 

  12. Sturtz, L.A., Diekert, K., Jensen, L.T., Lill, R. & Culotta, V.C. J. Biol. Chem. 276, 38084–38089 (2001).

    CAS  PubMed  Google Scholar 

  13. Banci, L., Bertini, I., Cramaro, F., Del Conte, R. & Viezzoli, M.S. Biochemistry 42, 9543–9553 (2003).

    Article  CAS  Google Scholar 

  14. Banci, L., Bertini, I., Cantini, F., D'Amelio, N. & Gaggelli, E. J. Biol. Chem. 281, 2333–2337 (2006).

    Article  CAS  Google Scholar 

  15. Banci, L., Barbieri, L., Bertini, I., Cantini, F. & Luchinat, E. PLoS ONE 6, e23561 (2011).

    Article  CAS  Google Scholar 

  16. Kim, B.E., Nevitt, T. & Thiele, D.J. Nat. Chem. Biol. 4, 176–185 (2008).

    Article  CAS  Google Scholar 

  17. Puig, S. & Thiele, D.J. Curr. Opin. Chem. Biol. 6, 171–180 (2002).

    Article  CAS  Google Scholar 

  18. Banci, L. et al. Nature 465, 645–648 (2010).

    Article  CAS  Google Scholar 

  19. Schmidt, P.J. et al. J. Biol. Chem. 274, 23719–23725 (1999).

    Article  CAS  Google Scholar 

  20. Furukawa, Y., Torres, A.S. & O'Halloran, T.V. EMBO J. 23, 2872–2881 (2004).

    Article  CAS  Google Scholar 

  21. Carroll, M.C. et al. Proc. Natl. Acad. Sci. USA 101, 5964–5969 (2004).

    Article  CAS  Google Scholar 

  22. Leitch, J.M., Yick, P.J. & Culotta, V.C. J. Biol. Chem. 284, 24679–24683 (2009).

    Article  CAS  Google Scholar 

  23. Proescher, J.B., Son, M., Elliott, J.L. & Culotta, V.C. Hum. Mol. Genet. 17, 1728–1737 (2008).

    Article  CAS  Google Scholar 

  24. Banci, L. et al. Proc. Natl. Acad. Sci. USA 109, 13555–13560 (2012).

    Article  CAS  Google Scholar 

  25. Reckel, S., Lopez, J.J., Löhr, F., Glaubitz, C. & Dötsch, V. ChemBioChem 13, 534–537 (2012).

    Article  CAS  Google Scholar 

  26. Schanda, P. & Brutscher, B. J. Am. Chem. Soc. 127, 8014–8015 (2005).

    Article  CAS  Google Scholar 

  27. Freshney, R. Culture of Animal Cells: A Manual of Basic Technique, 2nd edn. (Wiley-Liss, 1987).

Download references

Acknowledgements

We would like to thank E.Y. Jones and D.I. Stuart for critically reading the manuscript and providing advice. This work was supported by the Access to Research Infrastructures activities in the Seventh Framework Programme of the European Commission (Bio-NMR contract 261863 and P-CUBE contract 227764), by the Italian grant program MIUR-PRIN 2009 'Biologia strutturale meccanicistica: avanzamenti metodologici e biologici' and by the European Integrated Structural Biology Infrastructure (INSTRUCT), which is part of the European Strategy Forum on Research Infrastructures (ESFRI) and supported by national member subscriptions. Specifically, we thank the INSTRUCT Core Centres CERM (Italy) and the University of Oxford. A.R.A. was supported by a UK Medical Research Council Career Development Award fellowship.

Author information

Authors and Affiliations

Authors

Contributions

L. Banci, I.B. and A.R.A. conceived the work; L. Banci, L. Barbieri, E.L. and A.R.A. designed the experiments; L. Barbieri and Y.Z. grew and transfected the human cells; L. Barbieri cloned the genes and produced the cell samples of SOD1, CCS, Atox1, Grx1 and Trx; E.S. produced the cell sample of Mia40; L. Barbieri and E.L. produced and analyzed the E. coli cell samples; E.L. performed the NMR experiments and analyzed the data; L. Banci, L. Barbieri, I.B., E.L. and A.R.A. wrote the paper.

Corresponding authors

Correspondence to Lucia Banci or A Radu Aricescu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 2070 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banci, L., Barbieri, L., Bertini, I. et al. Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol 9, 297–299 (2013). https://doi.org/10.1038/nchembio.1202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing