Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cortisone dissociates the Shaker family K+ channels from their β subunits

Abstract

The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and are essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with β subunits (Kvβs), and certain Kvβs, for example Kvβ1, have an N-terminal segment that closes the channel by the N-type inactivation mechanism. In principle, dissociation of Kvβ1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases rat Kv1 channel activity by binding to Kvβ1. A crystal structure of the Kvβ-cortisone complex was solved to 1.82-Å resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kvβ. The new mode of channel modulation may be explored by native or synthetic ligands to fine-tune cellular excitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cortisone potentiates Kv1.1 current via the AKR core of Kvβ.
Figure 2: Each Kvβ2 binds two cortisone molecules.
Figure 3: Binding to the enzymatic site is not required for channel modulation.
Figure 4: Binding to the interface site modulates channel inactivation.
Figure 5: Cortisone promotes dissociation of Kvβ.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Adelman, J.P., Bond, C.T., Pessia, M. & Maylie, J. Episodic ataxia results from voltage-dependent potassium channels with altered functions. Neuron 15, 1449–1454 (1995).

    Article  CAS  Google Scholar 

  2. Olson, T.M. et al. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum. Mol. Genet. 15, 2185–2191 (2006).

    Article  CAS  Google Scholar 

  3. Long, S.B., Campbell, E.B. & MacKinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    CAS  Google Scholar 

  4. Scott, V.E. et al. Primary structure of a beta subunit of alpha-dendrotoxin-sensitive K+ channels from bovine brain. Proc. Natl. Acad. Sci. USA 91, 1637–1641 (1994).

    Article  CAS  Google Scholar 

  5. Gulbis, J.M., Zhou, M., Mann, S. & MacKinnon, R. Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels. Science 289, 123–127 (2000).

    Article  CAS  Google Scholar 

  6. Sokolova, O. et al. Conformational changes in the C terminus of Shaker K+ channel bound to the rat Kvbeta2-subunit. Proc. Natl. Acad. Sci. USA 100, 12607–12612 (2003).

    Article  CAS  Google Scholar 

  7. Nagaya, N. & Papazian, D.M. Potassium channel alpha and beta subunits assemble in the endoplasmic reticulum. J. Biol. Chem. 272, 3022–3027 (1997).

    Article  CAS  Google Scholar 

  8. Rhodes, K.J. et al. Voltage-gated K+ channel beta subunits: expression and distribution of Kv beta 1 and Kv beta 2 in adult rat brain. J. Neurosci. 16, 4846–4860 (1996).

    Article  CAS  Google Scholar 

  9. Weng, J., Cao, Y., Moss, N. & Zhou, M. Modulation of voltage-dependent shaker family potassium channels by an aldo-keto reductase. J. Biol. Chem. 281, 15194–15200 (2006).

    Article  CAS  Google Scholar 

  10. Pan, Y., Weng, J., Cao, Y., Bhosle, R. & Zhou, M. Functional coupling between the Kv1.1 channel and an aldo-keto reductase Kvbeta1. J. Biol. Chem. 283, 8634–8642 (2008).

    Article  CAS  Google Scholar 

  11. Heinemann, S. et al. The inactivation behaviour of voltage-gated K-channels may be determined by association of alpha- and beta-subunits. J. Physiol. (Paris) 88, 173–180 (1994).

    Article  CAS  Google Scholar 

  12. Zagotta, W.N., Hoshi, T. & Aldrich, R.W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250, 568–571 (1990).

    Article  CAS  Google Scholar 

  13. Hoshi, T., Zagotta, W.N. & Aldrich, R.W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

    Article  CAS  Google Scholar 

  14. Zhou, M., Morais-Cabral, J.H., Mann, S. & MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657–661 (2001).

    Article  CAS  Google Scholar 

  15. del Camino, D., Holmgren, M., Liu, Y. & Yellen, G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403, 321–325 (2000).

    Article  CAS  Google Scholar 

  16. Isacoff, E.Y., Jan, Y.N. & Jan, L.Y. Putative receptor for the cytoplasmic inactivation gate in the Shaker K+ channel. Nature 353, 86–90 (1991).

    Article  CAS  Google Scholar 

  17. Gulbis, J.M., Mann, S. & MacKinnon, R. Structure of a voltage-dependent K+ channel beta subunit. Cell 97, 943–952 (1999).

    Article  CAS  Google Scholar 

  18. Heinemann, S.H., Rettig, J., Graack, H.R. & Pongs, O. Functional characterization of Kv channel beta-subunits from rat brain. J. Physiol. (Lond.) 493, 625–633 (1996).

    Article  CAS  Google Scholar 

  19. Shi, G. et al. Beta subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16, 843–852 (1996).

    Article  CAS  Google Scholar 

  20. Accili, E.A., Kuryshev, Y.A., Wible, B.A. & Brown, A.M. Separable effects of human Kvbeta1.2 N- and C-termini on inactivation and expression of human Kv1.4. J. Physiol. (Lond.) 512, 325–336 (1998).

    Article  CAS  Google Scholar 

  21. Gu, C., Jan, Y.N. & Jan, L.Y. A conserved domain in axonal targeting of Kv1 (Shaker) voltage-gated potassium channels. Science 301, 646–649 (2003).

    Article  CAS  Google Scholar 

  22. Wells, J.A. & McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001–1009 (2007).

    Article  CAS  Google Scholar 

  23. Rhodes, K.J. et al. Association and colocalization of the Kvbeta1 and Kvbeta2 beta-subunits with Kv1 alpha-subunits in mammalian brain K+ channel complexes. J. Neurosci. 17, 8246–8258 (1997).

    Article  CAS  Google Scholar 

  24. Sewing, S., Roeper, J. & Pongs, O. Kv beta 1 subunit binding specific for shaker-related potassium channel alpha subunits. Neuron 16, 455–463 (1996).

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  26. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 56, 1622–1624 (2000).

    Article  CAS  Google Scholar 

  27. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  28. Schuttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  Google Scholar 

  29. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  30. Laskowski, R.A., MacArthur, M.W. & Thornton, J.M. Validation of protein models derived from experiment. Curr. Opin. Struct. Biol. 8, 631–639 (1998).

    Article  CAS  Google Scholar 

  31. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. MacKinnon (Rockefeller University) for advice and generous help throughout the project. We thank C. Deutsch (University of Pennsylvania) and C. Miller (Brandeis University) for critical comments on the manuscript. Data for this study were measured at beamlines X4A, X4C and X29 of the National Synchrotron Light Source. We thank J. Schwanof, R. Abramowitz, S. Myers, N. Whalen and R. Jackimowicz for technical support during data collection. This work was supported by the American Heart Association (0630148N to M.Z. and 0826067D to Y.P.), the US National Institutes of Health (HL086392 to M.Z.), the March of Dimes Birth Defects Foundation (research grant #5-FY06-20 to M.Z.) and a grant from the Pew Scholars Program (to M.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhou.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Table 1 and Supplementary Methods (PDF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Y., Weng, J., Kabaleeswaran, V. et al. Cortisone dissociates the Shaker family K+ channels from their β subunits. Nat Chem Biol 4, 708–714 (2008). https://doi.org/10.1038/nchembio.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing