Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P2

Abstract

Inwardly rectifying potassium (Kir) channels are gated by the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). Among them, Kir3 requires additional molecules, such as the βγ subunits of G proteins or intracellular sodium, for channel gating. Using an interactive computational-experimental approach, we show that sodium sensitivity of Kir channels involves the side chains of an aspartate and a histidine located across from each other in a crucial loop in the cytosolic domain, as well as the backbone carbonyls of two more residues and a water molecule. The location of the coordination site in the vicinity of a conserved arginine shown to affect channel–PtdIns(4,5)P2 interactions suggests that sodium triggers a structural switch that frees the crucial arginine. Mutations of the aspartate and the histidine that affect sodium sensitivity also enhance the channel's sensitivity to PtdIns(4,5)P2. Furthermore, on the basis of the molecular characteristics of the coordination site, we identify and confirm experimentally a sodium-sensitive phenotype in Kir5.1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Positions of key residues in a loop of Kir channels where Na+ is coordinated.
Figure 2: H-bonding pattern between position 217 and residues in its vicinity.
Figure 3: Experimental evidence for Kir3.4* residues involved in Na+ sensitivity.
Figure 4
Figure 5: Experimental evidence for Kir2.1 and Kir5.1 residues involved in Na+ sensitivity.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Tamargo, J., Caballero, R., Gómez, R., Valenzuela, C. & Delpón, E. Pharmacology of cardiac potassium channels. Cardiovasc. Res. 62, 9–33 (2004).

    Article  CAS  Google Scholar 

  2. Isomoto, S., Kondo, C. & Kurachi, Y. Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn. J. Physiol. 47, 11–39 (1997).

    Article  CAS  Google Scholar 

  3. Nerbonne, J.M., Nichols, C.G., Schwarz, T.L. & Escande, D. Genetic manipulation of cardiac K+ channel function in mice: what have we learned, and where do we go from here? Circ. Res. 89, 944–956 (2001).

    Article  CAS  Google Scholar 

  4. Hilgemann, D.W., Feng, S. & Nasuhoglu, C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. STKE doi: 10.1126/stke.2001.111.re19 (4 December 2001).

  5. Lopes, C.M.B., Zhang, H., Rohacs, T., Yang, J. & Logothetis, D.E. Alterations in conserved interactions between PIP2 and Kir channels underlie channelopathies. Neuron 34, 933–944 (2002).

    Article  CAS  Google Scholar 

  6. Krapivinsky, G. et al. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374, 135–141 (1995).

    Article  CAS  Google Scholar 

  7. Chan, K.W. et al. A recombinant inwardly rectifying potassium channel coupled to GTP-binding proteins. J. Gen. Physiol. 107, 381–397 (1996).

    Article  CAS  Google Scholar 

  8. Hedin, K.E., Lim, N.F. & Clapham, D.E. Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes. Neuron 16, 423–429 (1996).

    Article  CAS  Google Scholar 

  9. Chan, K.W., Sui, J.L., Vivaudou, M. & Logothetis, D.E. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc. Natl. Acad. Sci. USA 93, 14193–14198 (1996b).

    Article  CAS  Google Scholar 

  10. Vivaudou, M. et al. Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants. J. Biol. Chem. 272, 31553–31560 (1997).

    Article  CAS  Google Scholar 

  11. Sui, J.L., Petit-Jacques, J. & Logothetis, D.E. Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc. Natl. Acad. Sci. USA 95, 1307–1312 (1998).

    Article  CAS  Google Scholar 

  12. Lesage, F. et al. Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J. Biol. Chem. 270, 28660–28667 (1995).

    Article  CAS  Google Scholar 

  13. Ho, I.H. & Murrell-Lagnado, R.D. Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem. 274, 8639–8648 (1999).

    Article  CAS  Google Scholar 

  14. Ho, I.H. & Murrell-Lagnado, R.D. Molecular mechanism for sodium-dependent activation of G protein-gated K+ channels. J. Physiol. (Lond.) 520, 645–651 (1999).

    Article  CAS  Google Scholar 

  15. Sui, J.L., Chan, K.W. & Logothetis, D.E. Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism. J. Gen. Physiol. 108, 381–391 (1996).

    Article  CAS  Google Scholar 

  16. Zhang, H., He, C., Yan, X., Mirshahi, T. & Logothetis, D.E. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat. Cell Biol. 1, 183–188 (1999).

    Article  CAS  Google Scholar 

  17. Tristani-Firouzi, M. et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J. Clin. Invest. 110, 381–388 (2002).

    Article  CAS  Google Scholar 

  18. Nishida, M. & MacKinnon, R. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111, 957–965 (2002).

    Article  CAS  Google Scholar 

  19. Pegan, S. et al. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat. Neurosci. 8, 279–287 (2005).

    Article  CAS  Google Scholar 

  20. Stevens, E.B., Woodward, R., Ho, I.H. & Murrell-Lagnado, R. Identification of regions that regulate the expression and activity of G protein-gated inward rectifier K+ channels in Xenopus oocytes. J. Physiol. (Lond.) 503, 547–562 (1997).

    Article  CAS  Google Scholar 

  21. Di Cera, E. et al. The Na+ binding site of thrombin. J. Biol. Chem. 270, 22089–22092 (1995).

    Article  CAS  Google Scholar 

  22. Glusker, J.P. Structural aspects of metal liganding to functional groups in proteins. Adv. Protein Chem. 42, 1–76 (1991).

    Article  CAS  Google Scholar 

  23. Karpen, M.E., Tobias, D.J. & Brooks, C.L., III. Statistical clustering techniques for the analysis of long molecular dynamics trajectories: analysis of 2.2-ns trajectories of YPGDV. Biochemistry 32, 412–420 (1993).

    Article  CAS  Google Scholar 

  24. Carpenter, G.A. & Grossberg, S. ART 2: self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 26, 4919–4930 (1987).

    Article  CAS  Google Scholar 

  25. Pao, Y.-H. Adaptive Pattern Recognition and Neural Networks (Addison-Wesley, New York, 1989).

  26. Brooks, B.R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  27. Beglov, D. & Roux, B. Dominant solvation effects from primary shell of hydration: approximation for molecular dynamics simulations. Biopolymers 35, 171–178 (1995).

    Article  CAS  Google Scholar 

  28. Zerangue, N., Schwappach, B., Jan, Y.N. & Jan, L.Y. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane KATP channels. Neuron 22, 537–548 (1999).

    Article  CAS  Google Scholar 

  29. Lamoureux, G. & Roux, B. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. J. Phys. Chem. B 110, 3308–3322 (2006).

    Article  CAS  Google Scholar 

  30. Wang, P., Wesdemiotis, C., Kapota, C. & Ohanessian, G. The sodium ion affinities of simple di-, tri-, and tetrapeptides. J. Am. Soc. Mass Spectrom. 18, 541–552 (2007).

    Article  Google Scholar 

  31. Kapota, C. & Ohanessian, G. The low energy tautomers and conformers of the dipeptides HisGly and GlyHis and of their sodium ion complexes in the gas phase. Phys. Chem. Chem. Phys. 7, 3744–3755 (2005).

    Article  CAS  Google Scholar 

  32. Yu, X.M. The role of intracellular sodium in the regulation of NMDA-receptor-mediated channel activity and toxicity. Mol. Neurobiol. 33, 63–80 (2006).

    Article  CAS  Google Scholar 

  33. Dryer, S.E. Na+-activated K+ channels: A new family of large-conductance ion channels. Trends Neurosci. 17, 155–160 (1994).

    Article  CAS  Google Scholar 

  34. Salkoff, L., Butler, A., Ferreira, G., Santi, C. & Wei, A. High-conductance potassium channels of the SLO family. Nat. Rev. Neurosci. 7, 921–931 (2006).

    Article  CAS  Google Scholar 

  35. Komwatana, P., Dinudom, A., Young, J.A. & Cook, D.I. Cytosolic Na+ controls and epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein. Proc. Natl. Acad. Sci. USA 93, 8107–8111 (1996).

    Article  CAS  Google Scholar 

  36. Harding, M.M. The architecture of metal coordination groups in proteins. Acta Crystallogr. D Biol. Crystallogr. 60, 849–859 (2004).

    Article  Google Scholar 

  37. Logothetis, D.E., Jin, T., Lupyan, D. & Rosenhouse-Dantsker, A. Phosphoinositide-mediated gating of inwardly rectifying K+ channels. Pflugers Arch. 455, 83–95 (2007a).

    Article  CAS  Google Scholar 

  38. Logothetis, D.E., Lupyan, D. & Rosenhouse-Dantsker, A. Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding. J. Physiol. (Lond.) 582, 953–965 (2007b).

    Article  CAS  Google Scholar 

  39. Nishida, M., Cadene, M., Chait, B.T. & Mackinnon, R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 26, 4005–4015 (2007).

    Article  CAS  Google Scholar 

  40. Inanobe, A., Matsuura, T., Nakagawa, A. & Kurachi, Y. Structural diversity in the cytoplasmic region of G protein-gated inward rectifier K+ channels. Channels 1, 39–45 (2007).

    Article  Google Scholar 

  41. Tucker, S.J., Imbrici, P., Salvatore, L., D'Adamo, M.C. & Pessia, M. pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia. J. Biol. Chem. 275, 16404–16407 (2000).

    Article  CAS  Google Scholar 

  42. Wu, J., Xu, H., Shen, W. & Jiang, C. Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats. J. Membr. Biol. 197, 179–191 (2004).

    Article  CAS  Google Scholar 

  43. Schreiber, H. & Steinhauser, O. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochemistry 31, 5856–5860 (1992).

    Article  CAS  Google Scholar 

  44. Chan, K.W., Sui, J.L., Vivaudou, M. & Logothetis, D.E. Specific regions of heteromeric subunits involved in enhancement of G protein-gated K+ channel activity. J. Biol. Chem. 272, 6548–6555 (1997).

    Article  CAS  Google Scholar 

  45. He, C. et al. Identification of critical residues controlling G protein-gated inwardly rectifying K+ channel activity through interactions with the βγ subunits of G proteins. J. Biol. Chem. 277, 6088–6096 (2002).

    Article  CAS  Google Scholar 

  46. Hilgemann, D.W. The giant membrane patch, in Single-Channel Recording (eds. Sakmann, B. & Neher, E.) 307–327 (Plenum, New York, 1995).

    Chapter  Google Scholar 

  47. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank E. Findeis, T. Borges, V. Petrou and H. Vaananen for oocyte preparation. This work was supported by a US National Institutes of Health grant (HL-59949) to D.E.L.

Author information

Authors and Affiliations

Authors

Contributions

A.R.-D. designed and performed the molecular modeling studies, the mutagenesis and the two-electrode voltage-clamp experiments, wrote the manuscript and revised the manuscript to address the reviewers' comments. J.L.S. (Kir3.4*, Kir2.1), Q.Z. (Kir4.1/Kir5.1) and R.R. (Kir3.1/Kir3.2, Kir4.1) performed the inside-out macropatch recordings. A.A.R.-M. carried out the PtdIns(4,5)P2 dose-response curve and Z.Z. performed the Na+ dose-response curve. D.E.L. initiated and supervised the work, edited the manuscript produced by A.R.-D., and revised the final form of the manuscript.

Corresponding author

Correspondence to Diomedes E Logothetis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 850 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenhouse-Dantsker, A., Sui, J., Zhao, Q. et al. A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P2. Nat Chem Biol 4, 624–631 (2008). https://doi.org/10.1038/nchembio.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.112

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing