Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

O2-independent formation of the inactive states of NiFe hydrogenase

Abstract

We studied the mechanism of aerobic inactivation of Desulfovibrio fructosovorans nickel-iron (NiFe) hydrogenase by quantitatively examining the results of electrochemistry, EPR and FTIR experiments. They suggest that, contrary to the commonly accepted mechanism, the attacking O2 is not incorporated as an active site ligand but, rather, acts as an electron acceptor. Our findings offer new ways toward the understanding of O2 inactivation and O2 tolerance in NiFe hydrogenases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active and inactive forms of the NiFe hydrogenase.
Figure 2: EPR and FTIR characterizations of the oxidation of the NiFe enzyme.

Similar content being viewed by others

References

  1. Fernandez, V.M., Hatchikian, E.C., Patil, D.S. & Cammack, R. Biochim. Biophys. Acta 883, 145–154 (1986).

    Article  CAS  Google Scholar 

  2. Volbeda, A. et al. Nature 373, 580–587 (1995).

    Article  CAS  Google Scholar 

  3. Higuchi, Y., Yagi, T. & Yasuoka, N. Structure 5, 1671–1680 (1997).

    Article  CAS  Google Scholar 

  4. Ogata, H. et al. Structure 13, 1635–1642 (2005).

    Article  CAS  Google Scholar 

  5. Pandelia, M.E., Ogata, H. & Lubitz, W. ChemPhysChem 11, 1127–1140 (2010).

    Article  CAS  Google Scholar 

  6. Lamle, S.E., Albracht, S.P. & Armstrong, F.A. J. Am. Chem. Soc. 126, 14899–14909 (2004).

    Article  CAS  Google Scholar 

  7. Fritsch, J. et al. Nature 479, 249–252 (2011).

    Article  CAS  Google Scholar 

  8. Pandelia, M.E. et al. Proc. Natl. Acad. Sci. USA 108, 6097–6102 (2011).

    Article  CAS  Google Scholar 

  9. Volbeda, A. et al. Proc. Natl. Acad. Sci. USA 109, 5305–5310 (2012).

    Article  CAS  Google Scholar 

  10. Shomura, Y., Yoon, K.S., Nishihara, H. & Higuchi, Y. Nature 479, 253–256 (2011).

    Article  CAS  Google Scholar 

  11. Millo, D. et al. J. Phys. Chem. B 113, 15344–15351 (2009).

    Article  CAS  Google Scholar 

  12. De Lacey, A.L., Fernandez, V.M., Rousset, M. & Cammack, R. Chem. Rev. 107, 4304–4330 (2007).

    Article  CAS  Google Scholar 

  13. van der Zwaan, J.W., Albracht, S.P., Fontijn, R.D. & Slater, E.C. FEBS Lett. 179, 271–277 (1985).

    Article  CAS  Google Scholar 

  14. Liebgott, P.P. et al. J. Am. Chem. Soc. 133, 986–997 (2011).

    Article  CAS  Google Scholar 

  15. Bleijlevens, B. et al. J. Biol. Inorg. Chem. 9, 743–752 (2004).

    Article  CAS  Google Scholar 

  16. Liebgott, P.P. et al. Nat. Chem. Biol. 6, 63–70 (2010).

    Article  CAS  Google Scholar 

  17. van der Zwaan, J.W., Coremans, J.M., Bouwens, E.C. & Albracht, S.P. Biochim. Biophys. Acta 1041, 101–110 (1990).

    Article  CAS  Google Scholar 

  18. Volbeda, A. et al. J. Biol. Inorg. Chem. 10, 239–249 (2005).

    Article  CAS  Google Scholar 

  19. Ogata, H., Kellers, P. & Lubitz, W. J. Mol. Biol. 402, 428–444 (2010).

    Article  CAS  Google Scholar 

  20. Carepo, M. et al. J. Am. Chem. Soc. 124, 281–286 (2002).

    Article  CAS  Google Scholar 

  21. Van Gastel, M. Appl. Magn. Reson. 37, 207–218 (2010).

    Article  Google Scholar 

  22. Kumar, M., Colpas, G.J., Day, R.O. & Maroney, M.J. J. Am. Chem. Soc. 111, 8323–8325 (1989).

    Article  CAS  Google Scholar 

  23. Chohan, B.S., Shoner, S.C., Kovacs, J.A. & Maroney, M.J. Inorg. Chem. 43, 7726–7734 (2004).

    Article  CAS  Google Scholar 

  24. Reddie, K.G. & Carroll, K.S. Curr. Opin. Chem. Biol. 12, 746–754 (2008).

    Article  CAS  Google Scholar 

  25. Pandelia, M.E. et al. J. Am. Chem. Soc. 132, 6991–7004 (2010).

    Article  CAS  Google Scholar 

  26. Leroux, F. et al. Experimental approaches to kinetics of gas diffusion in hydrogenase. Proc. Natl. Acad. Sci. USA 105, 11188–11193 (2008).

    Article  CAS  Google Scholar 

  27. Liebgott, P.P. et al. Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat. Chem. Biol. 6, 63–70 (2010).

    Article  CAS  Google Scholar 

  28. Léger, C., Dementin, S., Bertrand, P., Rousset, M. & Guigliarelli, B. Inhibition and aerobic inactivation kinetics of Desulfovibrio fructosovorans NiFe hydrogenase studied by protein film voltammetry. J. Am. Chem. Soc. 126, 12162–12172 (2004).

    Article  Google Scholar 

  29. Liebgott, P.P. et al. Original design of an oxygen-tolerant [NiFe] hydrogenase: major effect of a valine-to-cysteine mutation near the active site. J. Am. Chem. Soc. 133, 986–997 (2011).

    Article  CAS  Google Scholar 

  30. Rudiger, O., Abad, J.M., Hatchikian, E.C., Fernandez, V.M. & De Lacey, A.L. Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2 . J. Am. Chem. Soc. 127, 16008–16009 (2005).

    Article  Google Scholar 

  31. Volbeda, A. et al. Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J. Am. Chem. Soc. 118, 12989–12996 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Hadj-Saïd for performing preliminary electrochemical experiments and P. Bertrand, V. Fourmond and V. Fernández for helpful discussions. This work was funded by the CNRS, the Agence Nationale de la Recherche, the Aix-Marseille Université, the City of Marseilles and the Spanish Ministerio de Ciencia e Innovación (MICINN) (project CTQ2009-12649) and was supported by the Pôle de Compétitivité Capénergies. A.A.H. thanks the CNRS and the Région Provence-Alpes Côte d'Azur for financial support. O.G.-S. thanks the MICINN for a Formación de Personal Investigador (FPI) grant.

Author information

Authors and Affiliations

Authors

Contributions

A.A.H. carried out the enzyme purification, electrochemical and EPR experiments, and analyzed the data with the support of S.D., M.R., C.B., C.L., B.B. and B.G. O.G.-S. performed FTIR experiments and analyzed the data with the support of A.L.D.L. P.-P.L. performed preliminary electrochemical experiments and analyzed the data. The research was designed by A.A.H., B.B., M.R., B.G., C.L. and S.D. S.D. and C.L. wrote the manuscript.

Corresponding author

Correspondence to Sébastien Dementin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 874 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abou Hamdan, A., Burlat, B., Gutiérrez-Sanz, O. et al. O2-independent formation of the inactive states of NiFe hydrogenase. Nat Chem Biol 9, 15–17 (2013). https://doi.org/10.1038/nchembio.1110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing