Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protecting-group-free synthesis as an opportunity for invention

Abstract

The constant pressure to prepare compounds in a more efficient manner has placed the process by which traditional synthetic chemistry is conducted under scrutiny. Areas that have the potential to be improved must be highlighted and modified, so that we can approach the criterion of the 'ideal synthesis'. One area that offers this prospect is the minimization of the use of protecting groups in synthesis. A protection/deprotection event introduces at least two steps into a sequence, incurring costs from additional reagents and waste disposal, and generally leads to a reduced overall yield. Here we present relevant historical context and highlight recent (post-2004) total syntheses that have developed new chemistry in an effort to exclude protecting groups. The invention of chemoselective methodologies is crucial to the execution of 'protecting-group-free' synthesis, and recent advances in this area are also highlighted.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classical PGF total syntheses of natural products.
Figure 2: Indole-based natural products synthesized in the Baran laboratory.
Figure 3: PGF syntheses of diterpenoid and stemona natural products.
Figure 4: PGF syntheses of the platensimycin (90)-platencin (96) family of antibiotics.
Figure 5: Additional natural products prepared without the aid of protecting groups.
Figure 6: Methodologies recently developed to alleviate the necessity of protecting groups in related transformations.
Figure 7: Examples of chemoselective transformations that proceed without the necessity of protecting groups.

Similar content being viewed by others

References

  1. Seebach, D. Organic synthesis – where now? Angew. Chem. Int. Ed. Engl. 29, 1320–1367 (1990).

    Article  Google Scholar 

  2. Wender, P. A. Introduction: frontiers in organic synthesis. Chem. Rev. 96, 1–2 (1996).

    Article  PubMed  Google Scholar 

  3. Grubbs, R. H. A catalytic lifetime. Chem. Sci. 4, C69 (2007).

    Google Scholar 

  4. Wender, P. A. & Miller, B. L. in Organic Synthesis: Theory and Applications Vol. 2 (ed. Hudlicky, T.) 27–66 (JAI, 1993).

    Google Scholar 

  5. Wender, P. A., Verma, V. A., Paxton, T. J. & Pillow, T. H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res. 41, 40–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Trost, B. M. The atom economy – a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Anastas, P. & Warner, J. Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998).

    Google Scholar 

  8. Li, C.-J. & Trost, B. M. Green chemistry for chemical synthesis. Proc. Natl Acad. Sci. USA 105, 13197–13202 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Green, T. W. & Wuts, P. G. Protective Groups in Organic Synthesis 3rd edn (Wiley, 1999).

    Book  Google Scholar 

  10. Kocienski, P. J. Protecting Groups 3rd edn (Thieme, 2005).

    Book  Google Scholar 

  11. Corey, E. J. & Venkateswarlu, A. Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives. J. Am. Chem. Soc. 94, 6190–6191 (1972).

    Article  CAS  Google Scholar 

  12. Corey, E. J., Cho, H., Rücker, C. & Hua, D. H. Studies with trialkylsilyltriflates: new syntheses and applications. Tetrahedron Lett. 22, 3455–3458 (1981).

    Article  CAS  Google Scholar 

  13. Merrifield, R. B. Solid phase peptide synthesis. 1. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  14. Fischer, E. Ueber die Verbindunger der Zucker mit den Alkoholen und Ketonen. Ber. Deut. Chem. Ges. 28, 1145–1167 (1895).

    Article  Google Scholar 

  15. Gillis, E. P. & Burke, M. D. A simple and modular strategy for small molecule synthesis: iterative Suzuki-Miyaura coupling of B-protected haloboronic acid building blocks. J. Am. Chem. Soc. 129, 6716–6717 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann, R. W. Protecting-group-free synthesis. Synthesis 3531–3541 (2006).

  17. Trost, B. M. Selectivity: a key to synthetic efficiency. Science 219, 245–250 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Shenvi, R. A., O'Malley, D. P. & Baran, P. S. Chemoselectivity: the mother of invention in total synthesis. Acc. Chem. Res. 42, 530–541 (2009).

    Article  CAS  Google Scholar 

  19. Sierra, M. A. & de la Toree, M. C. Dead Ends and Detours, Direct Ways to Successful Total Synthesis (Wiley-VCH, 2004).

    Google Scholar 

  20. Faber, K. Biotransformations in Organic Chemistry 3rd edn (Springer, 1997).

    Book  Google Scholar 

  21. Breslow, R. Biomimetic chemistry and artificial enzymes: catalysis by design. Acc. Chem. Res. 28, 146–153 (1995).

    Article  CAS  Google Scholar 

  22. Gravel, E. & Poupon, E. Biogenesis and biomimetic chemistry: can complex natural products be assembled spontaneously? Eur. J. Org. Chem. 27–42 (2008).

  23. Robinson, R. A synthesis of tropinone. J. Chem. Soc. Trans. 111, 762–768 (1917).

    Article  CAS  Google Scholar 

  24. Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1995).

    Google Scholar 

  25. Nicolaou, K. C., Edmonds, D. J. & Bulger, P. G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed. 45, 7134–7186 (2006).

    Article  CAS  Google Scholar 

  26. Bruggink, A., Schoevaart, R. & Kieboom, T. Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert. Org. Process Res. Dev. 7, 622–640 (2003).

    Article  CAS  Google Scholar 

  27. Danishefsky, S. & Dumas, D. The total synthesis of racemic patchouli and epi-patchouli alcohol. Chem. Commun. 1287–1288 (1968).

  28. Heathcock, C. H., Blumenkopf, T. A. & Smith, K. M. Total synthesis of (±)-fawcettimine. J. Org. Chem. 54, 1548–1562 (1989).

    Article  CAS  Google Scholar 

  29. Harayama, T., Takatani, M. & Inubushi, Y. Total synthesis of the lycopodium alkaloids (±)-fawcettimine and (±)-8-deoxyserratinine. Chem. Pharm. Bull. (Tokyo) 28, 2394–2402 (1980).

    Article  CAS  Google Scholar 

  30. Stoermer, D. & Heathcock, C. H. Total synthesis of (−)-alloaristoteline, (−)-serratoline, and (+)-aristotelone. J. Org. Chem. 58, 564–568 (1993).

    Article  CAS  Google Scholar 

  31. Bittner, M. et al. New alkaloids from Aristotelia chilensis (mol.) stuntz. J. Chem. Soc. Chem. Commun. 79–80 (1978).

  32. Kyburz, R., Schopp, E., Bick, I. R. C. & Hess, M. Tasmanin, ein neues Indolalkaloid aus Aristotelia peduncularis. Helv. Chim. Acta 64, 2555–2562 (1981).

    Article  CAS  Google Scholar 

  33. Stevens, R. V. & Kenney, P. M. Studies on the stereochemistry of nucleophilic additions to tetrahydropyridinium salts. Expeditious stereospecific total syntheses of (+)-makomakine, (+)-aristoteline, and (±)-hobartine. J. Chem. Soc. Chem. Commun. 384–386 (1983).

  34. Trost, B. M., Balkovec, J. M. & Mao, M. K.-T. A total synthesis of plumericin, allamcin, and allamandin. 2. A biomimetic strategy. J. Am. Chem. Soc. 108, 4974–4983 (1986).

    Article  CAS  Google Scholar 

  35. Baran, P. S. & Richter, J. M. Direct coupling of indoles with carbonyl compounds: short, enantioselective, gram-scale synthetic entry into the hapalindole and fischerindole alkaloid families. J. Am. Chem. Soc. 126, 7450–7451 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Baran, P. S., Maimone, T. J. & Richter, J. M. Total synthesis of marine natural products without using protecting groups. Nature 446, 404–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Baran, P. S. & Richter, J. M. Enantioselective total syntheses of welwitindolinone A and fischerindoles I and G. J. Am. Chem. Soc. 127, 15394–15396 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Shellhamer, D. F. et al. Reaction of xenon difluoride with indene in aqueous 1,2-dimethoxyethane and tetrahydrofuran. J. Chem. Soc. Perkin Trans. 2 401–403 (1991).

    Article  Google Scholar 

  39. Newhouse, T. & Baran, P. S. Total synthesis of (±)-psychotrimine. J. Am. Chem. Soc. 130, 10886–10887 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Matsuda, Y., Kitajima, M. & Takayama, H. First total synthesis of trimeric indole alkaloid, psychotrimine. Org. Lett. 10, 125–128 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Pfeiffer, M. W. B. & Phillips, A. J. Total synthesis of (+)-cyanthiwigin U. J. Am. Chem. Soc. 127, 5334–5335 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Grubbs, R. H., Miller, S. J. & Fu, G. C. Ring-closing metathesis and related processes in organic synthesis. Acc. Chem. Res. 28, 446–452 (1995).

    Article  CAS  Google Scholar 

  43. Nicolaou, K. C., Bulger, P. G. & Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4490–4527 (2005).

    Article  CAS  Google Scholar 

  44. McFadden, R. M. & Stoltz, B. M. The catalytic enantioselective, protecting group-free total synthesis of (+)-dichroanone. J. Am. Chem. Soc. 128, 7738–7739 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Behenna, D. C. & Stoltz, B. M. The enantioselective Tsuji allylation. J. Am. Chem. Soc. 126, 15044–15045 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Alvarez-Manzaneda, E. et al. A very efficient route toward the 4a-methyltetrahydrofluorene skeleton: short synthesis of (±)-dichroanone and (±)-taiwaniaquinone H. J. Org. Chem. 14, 3384–3388 (2009).

    Article  Google Scholar 

  47. Mohr, J. T., Ebner, D. C. & Stoltz, B. M. Catalytic enantioselective stereoablative reactions: an unexploited approach to enantioselective catalysis. Org. Biomol. Chem. 5, 3571–3576 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Enquist, J. A. & Stoltz, B. M. The total synthesis of (−)-cyanthiwigin F by means of a double catalytic enantioselective alkylation. Nature 453, 1228–1231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng, Y. & Aubé, J. An expeditious total synthesis of (±)-stenine. J. Am. Chem. Soc. 127, 15712–15713 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Frankowski, K. J., Golden, J. E., Yibin, Z., Lei, Y. & Aubé, J. Syntheses of the stemona alkaloids (±)-stenine, (±)-neostenine, and (±)-13-epineostenine using a stereodivergent Diels–Alder/azido-Schmidt reaction. J. Am. Chem. Soc. 130, 6018–6024 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lainchbury, M. D. et al. A protecting group free synthesis of (±)-neostenine via the [5+2] photocycloaddition of maleimides. J. Org. Chem. 73, 6497–6505 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Booker-Milburn, K. I. et al. Intramolecular photocycloaddition of N-alkenyl substituted maleimides: a potential tool for rapid construction of perhydroazaazulene alkaloids. Eur. J. Org. Chem. 1473–1482 (2001).

  53. Wang, J. et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441, 358–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, J. et al. Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc. Natl Acad. Sci. USA 104, 7612–7616 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Manallack, D. T., Crosby, I. T., Khakham, Y. & Capuano, B. Platensimycin: a promising antimicrobial targeting fatty acid synthesis. Curr. Med. Chem. 15, 705–710 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Tiefenbacher, K. & Mulzer, J. Short formal synthesis of (−)-platencin. Angew. Chem. Int. Ed. 47, 6199–6200 (2008).

    Article  CAS  Google Scholar 

  57. Tiefenbacher, K. & Mulzer, J. Protecting-group-free formal synthesis of platensimycin. Angew. Chem. Int. Ed. 46, 8074–8075 (2007).

    Article  CAS  Google Scholar 

  58. Hayashida, J. & Rawal, V. H. Total synthesis of (±)-platencin. Angew. Chem. Int. Ed. 47, 4373–4376 (2008).

    Article  CAS  Google Scholar 

  59. Nicolaou, K. C., Li., A. & Edmonds, D. J. Total synthesis of platensimycin. Angew. Chem. Int. Ed. 45, 7086–7090 (2006).

    Article  CAS  Google Scholar 

  60. Beames, D. J., Klose, T. R. & Mander, L. N. Studies on intramolecular alkylation. V* intramolecular alkylation of the aromatic ring in tetrahydronaphthyl diazomethyl ketones. Aust. J. Chem. 27, 1269–1275 (1974).

    Article  CAS  Google Scholar 

  61. Nicolaou, K. C., Tria, G. S. & Edmonds, D. J. Total synthesis of platencin. Angew. Chem. Int. Ed. 47, 1780–1783 (2008).

    Article  CAS  Google Scholar 

  62. Roethle, P. A. & Trauner, D. Expedient synthesis of (±)-bipinnatin J. Org. Lett. 8, 345–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Roethle, P. A., Hernandez, P. T. & Trauner, D. Exploring biosynthetic relationships among furanocembranoids: synthesis of (−)-bipinnatin J, (+)-intricarene, (+)-rubifolide, and (+)-isoepilophodione B. Org. Lett. 8, 5901–5904 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Sofiyev, V., Navarro, G. & Trauner, D. Biomimetic synthesis of the shimalactones. Org. Lett. 10, 149–152 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Barbarow, J. E., Miller, A. K. & Trauner, D. Biomimetic synthesis of elysiapyrones A and B. Org. Lett. 7, 2901–2903 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Gaich, T. & Mulzer, J. Total synthesis of (−)-penifulvin A, an insecticide with a dioxafenestrane skeleton. J. Am. Chem. Soc. 131, 452–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Wender, P. A. et al. Arene-alkene cycloadditions and organic synthesis. Pure Appl. Chem. 62, 1597–1602 (1990).

    Article  CAS  Google Scholar 

  68. Pandeshi, S. G. & Ward, D. E. Enatiospecific total synthesis of lairdinol A. J. Org. Chem. 73, 1071–1076 (2008).

    Article  CAS  Google Scholar 

  69. Sirasani, G., Paul, T. & Andrade, R. B. Concise total synthesis of (+)-crocacin C. J. Org. Chem. 73, 6386–6388 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Bandini, M. et al. A nonclassical stereoselective semi-synthesis of drospirenone via cross-metathesis reaction. Synthesis 3801–3804 (2008).

  71. Trost, B. M. & Weiss, A. H. Catalytic enantioselective synthesis of adociacetylene B. Org. Lett. 8, 4461–4464 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Alberico, D., Scott, M. E. & Lautens, M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev. 107, 174–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Kang, F.-A., Sui, Z. & Murray, W. V. Pd-catalyzed direct arylation of tautomerizable heterocycles with aryl boronic acids via C–OH, bond activation using phosphonium salts. J. Am. Chem. Soc. 130, 11300–11302 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Ohshima, T., Iwasaki, T., Maegawa, Y., Yoshiyama, A. & Mashima, K. Enzyme-like chemoselective acylation of alcohols in the presence of amines catalyzed by a tetranuclear zinc cluster. J. Am. Chem. Soc. 130, 2944–2945 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Shafir, A., Lichtor, P. A. & Buchwald, S. L. N- versus O-arylation of aminoalcohols: orthogonal selectivity in copper-based catalysts. J. Am. Chem. Soc. 129, 3490–3491 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Snieckus, V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 90, 879–933 (1990).

    Article  CAS  Google Scholar 

  77. Mei, T.-S., Giri, M., Maugel, N. & Yu, J.-Q. PdII-catalyzed monoselective ortho halogenation of C–H bonds assisted by counter cations: a complimentary method to directed ortho lithiation. Angew. Chem. Int. Ed. 47, 5215–5219 (2008).

    Article  CAS  Google Scholar 

  78. Gonzalez, A. G., Rosales, D., Ariza, J. L. G. & Sanza, J. F. Evaluation of solvent effects on the dissociation of aliphatic carboxylic acids in aqueous N, N-dimethylformamide mixtures according to the scaled particle theory. J. Phys. Org. Chem. 4, 87–95 (1991).

    Article  Google Scholar 

  79. Hili, R. & Yudin, A. K. Readily available unprotected amino aldehydes. J. Am. Chem. Soc. 128, 14772–14773 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Hili, R. & Yudin, A. K. Amphoteric amino aldehydes enable rapid assembly of unprotected amino alcohols. Angew. Chem. Int. Ed. 47, 4188–4191 (2008).

    Article  CAS  Google Scholar 

  81. Dangerfield, E. M., Timmer, M. S. M. & Stocker, B. L. Total synthesis without protecting groups: pyrrolidines and cyclic carbamates. Org. Lett. 11, 535–538 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Myers, A. G., Gleason, J. L. & Yoon, T. Practical method for the synthesis of D or L-α-amino acids by the alkylation of (+)- or (−)-pseudoephedrine glycinamide. J. Am. Chem. Soc. 117, 8488–8489 (1995).

    Article  CAS  Google Scholar 

  83. Drey, C. N. in Chemistry and Biochemistry of the Amino Acids (ed. Barrett, G. C.) Ch. 3 (Chapman and Hall, 1985).

    Google Scholar 

  84. Hsiao, Y. et al. Highly efficient synthesis of β-amino acid derivatives via asymmetric hydrogenation of unprotected enamines. J. Am. Chem. Soc. 126, 9918–9919 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Cohen, J. H. et al. A practical synthesis of the platelet fibrinogen antagonist, elarofiban. Org. Process Res. Dev. 7, 866–872 (2003).

    Article  CAS  Google Scholar 

  86. Ikemoto, N. et al. Highly diastereoselective heterogeneously catalyzed hydrogenation of enamines for the synthesis of chiral β-amino acid derivatives. J. Am. Chem. Soc. 126, 3048–3049 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Lubell, W. D., Kitamura, M. & Noyori, R. Enantioselective synthesis of β-amino acids based on BINAP-ruthenium(II) catalyzed hydrogenation. Tetrahedron Asymm. 2, 543–554 (1991).

    Article  CAS  Google Scholar 

  88. Kock, M., Grube, A., Seiple, I. B. & Baran, P. S. The pursuit of palau'amine. Angew. Chem. Int. Ed. 46, 6586–6594 (2007).

    Article  CAS  Google Scholar 

  89. O'Malley, D. P., Yamaguchi, J., Young, I. S., Seiple, I. B. & Baran, P. S. Total synthesis of (±)-axinellamines A and B. Angew. Chem. Int. Ed. 47, 3581–3583 (2008).

    Article  CAS  Google Scholar 

  90. Clarke, T. G., Hampson, N. A., Lee, J. B., Morely, J. R. & Scanlon, B. Oxidations involving silver. II. Oxidation of alcohols and aldehydes with silver(II) picolinate. Can. J. Chem. 47, 1649–1654 (1969).

    Article  CAS  Google Scholar 

  91. Su, S., Seiple, I. B., Young, I. S. & Baran, P. S. Total syntheses of (±)-massadine and massadine chloride. J. Am. Chem. Soc. 130, 16490–16491 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Perl, N. R. & Leighton, J. L. Enantioselective imidazole-directed allylation of aldimines and ketimines. Org. Lett. 9, 3699–3701 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Lewis, C. A. & Miller, S. J. Site-selective derivatization and remodeling of erythromycin A using simple peptide-based chiral catalysts. Angew. Chem. Int. Ed. 45, 5616–5619 (2006).

    Article  CAS  Google Scholar 

  94. Lewis, C. A. & Miller, S. J. Catalytic site-selective synthesis and evaluation of a series of erythromycin analogs. Bioorg. Med. Chem. Lett. 18, 6007–6011 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Uchiyama, M., Furuyama, T., Kobayashi, M., Matsumoto, Y. & Tanaka, K. Toward a protecting-group-free halogen-metal exchange reaction: practical, chemoselective metalation of functionalized aromatic halides using dianion-type zincate, tBu4ZnLi2 . J. Am. Chem. Soc. 128, 8404–8405 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Kopp, F., Wunderlich, S. & Knochel, P. Halogen-magnesium exchange on unprotected aromatic and heteroaromatic carboxylic acids. Chem. Commun. 2075–2077 (2007).

  97. Gudmundsdottir, A. V. & Nitz, M. Protecting group free glycosylation using p-toluenesulfonohydrazide donors. Org. Lett. 10, 3461–3463 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Villaro, M., Arsequell, G., Valencia, G., Ballesteros, A. & Barluenga, J. Arylation of Phe and Tyr side chains in unprotected peptides by Suzuki-Miyaura reaction in water. Org. Lett. 10, 3242–3245 (2008).

    Google Scholar 

  99. Saloranta, T., Müller, C., Vogt, D. & Leino, R. Converting unprotected monosaccharides into functionalized lactols in aqueous media: metal-mediated allylation combined with tandem hydroformylation-cyclisation. Chem. Eur. J. 14, 10539–10542 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Lin, Y. A., Chalker, J. M., Floyd, N., Bernardes, G. J. L. & Davis, B. G. Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. J. Am. Chem. Soc. 130, 9642–9643 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Steinmann, A., Thimm, J. & Thiem, J. First direct glycosylation of unprotected nonreducing mono- and disaccharides. Eur. J. Org. Chem. 5506–5513 (2007).

  102. Hong, Z., Liu, L., Hsu, C.-C. & Wong, C.-H. Three-step synthesis of sialic acids and derivatives. Angew. Chem. Int. Ed. 45, 7417–7421 (2006).

    Article  CAS  Google Scholar 

  103. Dawson, P. E. & Kent, S. B. H. Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 69, 923–960 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  105. Burns, N. Z., Baran, P. S. & Hoffmann, R. W. Redox-economy in organic synthesis. Angew. Chem. Int. Ed. 48, 2854–2867 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil S. Baran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, I., Baran, P. Protecting-group-free synthesis as an opportunity for invention. Nature Chem 1, 193–205 (2009). https://doi.org/10.1038/nchem.216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing