Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

E2F transcription factor-1 regulates oxidative metabolism

Abstract

Cells respond to stress by coordinating proliferative and metabolic pathways. Starvation restricts cell proliferative (glycolytic) and activates energy productive (oxidative) pathways. Conversely, cell growth and proliferation require increased glycolytic and decreased oxidative metabolism levels1. E2F transcription factors regulate both proliferative and metabolic genes2,3. E2Fs have been implicated in the G1/S cell-cycle transition, DNA repair, apoptosis, development and differentiation2,3,4. In pancreatic β-cells, E2F1 gene regulation facilitated glucose-stimulated insulin secretion5,6. Moreover, mice lacking E2F1 (E2f1−/−) were resistant to diet-induced obesity4. Here, we show that E2F1 coordinates cellular responses by acting as a regulatory switch between cell proliferation and metabolism. In basal conditions, E2F1 repressed key genes that regulate energy homeostasis and mitochondrial functions in muscle and brown adipose tissue. Consequently, E2f1−/− mice had a marked oxidative phenotype. An association between E2F1 and pRB was required for repression of genes implicated in oxidative metabolism. This repression was alleviated in a constitutively active CDK4 (CDK4R24C) mouse model or when adaptation to energy demand was required. Thus, E2F1 represents a metabolic switch from oxidative to glycolytic metabolism that responds to stressful conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of E2F1 affects energy expenditure, adaptive thermogenesis, mitochondrial function and physical activity.
Figure 2: Increased E2f1−/− oxidative metabolic gene expression level.
Figure 3: Cold and fasting modulate gene expression through the pRB–E2F1 complex.
Figure 4: Increased O2 consumption, running time and expression of oxidative genes in CDK4R24C/R24C mice.
Figure 5: DNA methylation of proliferative target genes modulates E2F1 transcriptional activity in muscle.

Similar content being viewed by others

References

  1. Warburg, O. Ueber den Stoffwechsel der Tumoren (Constable, 1930).

    Google Scholar 

  2. Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826 (2005).

    Article  CAS  Google Scholar 

  3. Sardet, C., Le Cam, L., Fabbrizio, E. & Vidal, M. E2Fs and the retinoblastoma protein family. Prog. Gene Exp. 2, 1–62 (1997).

    Google Scholar 

  4. Fajas, L. et al. E2Fs regulate adipocyte differentiation. Dev. Cell 3, 39–49 (2002).

    Article  CAS  Google Scholar 

  5. Annicotte, J. S. et al. The CDK4–pRB–E2F1 pathway controls insulin secretion. Nat. Cell Biol. 11, 1017–1023 (2009).

    Article  CAS  Google Scholar 

  6. Fajas, L. et al. Impaired pancreatic growth, β cell mass, and β cell function in E2F1(−/−) mice. J. Clin. Invest. 113, 1288–1295 (2004).

    Article  CAS  Google Scholar 

  7. Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat. Genet. 22, 44–52 (1999).

    Article  CAS  Google Scholar 

  8. Frolov, M. V. & Dyson, N. J. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J. Cell Sci. 117, 2173–2181 (2004).

    Article  CAS  Google Scholar 

  9. Hallstrom, T. C., Mori, S. & Nevins, J. R. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell 13, 11–22 (2008).

    Article  CAS  Google Scholar 

  10. Freedman, J. A., Chang, J. T., Jakoi, L. & Nevins, J. R. A combinatorial mechanism for determining the specificity of E2F activation and repression. Oncogene 28, 2873–2881 (2009).

    Article  CAS  Google Scholar 

  11. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  Google Scholar 

  12. Schiaffino, S. & Reggiani, C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev. 76, 371–423 (1996).

    Article  CAS  Google Scholar 

  13. Gollnick, P. D., Armstrong, R. B., Saubert, C. W. T., Piehl, K. & Saltin, B. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J. Appl. Physiol. 33, 312–319 (1972).

    Article  CAS  Google Scholar 

  14. Wang, Y. X. et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2, e294 (2004).

    Article  Google Scholar 

  15. Calabria, E. et al. NFAT isoforms control activity-dependent muscle fiber type specification. Proc. Natl Acad. Sci. USA 106, 13335–13340 (2009).

    Article  CAS  Google Scholar 

  16. Lin, J., Puigserver, P., Donovan, J., Tarr, P. & Spiegelman, B. M. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC- 1β), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277, 1645–1648 (2002).

    Article  CAS  Google Scholar 

  17. Seth, A. et al. The transcriptional corepressor RIP140 regulates oxidative metabolism in skeletal muscle. Cell Metab. 6, 236–245 (2007).

    Article  CAS  Google Scholar 

  18. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  CAS  Google Scholar 

  19. Chong, J. L. et al. E2f1-3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 462, 930–934 (2009).

    Article  CAS  Google Scholar 

  20. Dali-Youcef, N. et al. Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proc. Natl Acad. Sci. USA 104, 10703–10708 (2007).

    Article  CAS  Google Scholar 

  21. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC- 1α. Cell 127, 1109–1122 (2006).

    Article  CAS  Google Scholar 

  22. Mir, L. M. et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl Acad. Sci. USA 96, 4262–4267 (1999).

    Article  CAS  Google Scholar 

  23. Annicotte, J. et al. Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development. Mol. Cell Biol. 23, 6713–6724 (2003).

    Article  CAS  Google Scholar 

  24. Mensink, M. et al. Improved skeletal muscle oxidative enzyme activity and restoration of PGC- 1α and PPAR β/δ gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus. Int. J. Obes. 31, 1302–1310 (2007).

    Article  CAS  Google Scholar 

  25. Handschin, C. et al. PGC- 1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev. 21, 770–783 (2007).

    Article  CAS  Google Scholar 

  26. Casas, F. et al. Overexpression of the mitochondrial T3 receptor p43 induces a shift in skeletal muscle fiber types. PLoS ONE 3, e2501 (2008).

    Article  Google Scholar 

  27. Sarruf, D. A. et al. Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor γ. Mol. Cell Biol. 25, 9985–9995 (2005).

    Article  CAS  Google Scholar 

  28. Fajas, L. et al. The retinoblastoma-histone deacetylase 3 complex inhibits the peroxisome proliferator-activated receptor γ and adipocyte differentiation. Dev. Cell 3, 903–910 (2002).

    Article  CAS  Google Scholar 

  29. Aguilar, V. et al. S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase. Cell Metab. 5, 476–487 (2007).

    Article  CAS  Google Scholar 

  30. Annicotte, J. S. et al. Peroxisome proliferator-activated receptor γ regulates E-cadherin expression and inhibits growth and invasion of prostate cancer. Mol. Cell Biol. 26, 7561–7574 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Barbacid, B.M. Spiegelman, C. Sardet and L. Le Cam for the gift of materials and D. Greuet, C. Henriquet, S. Hure and J. Teyssier for their technical help. The authors are grateful to C. Cazevieille from Centre de Ressources en Imagerie Cellulaire de Montpellier for her technical assistance, data interpretation and ultrastructural evaluations. We are indebted to the RHEM network (Réseau d’Histologie Expérimentale de Montpellier, IFR122, France) for histology and, in particular, for tissue and slide preparations. Members of the Fajas laboratory are acknowledged for support and discussions. This work was supported by grants from Agence Nationale pour la Recherche (ANR genopath), INSERM-Association pour la Recherche sur le Diabète (PNR Diabète), Association Française des Diabétiques, Société Francophone du Diabète, Association pour la Recherche contre le Cancer, Fondation pour la Recherche Médicale, Ligue Contre le Cancer, European Research Council, National Institutes of Health, Swiss National Science Foundation and EPFL. E.B. was supported by a grant from the Ministère de l’Enseignement Supérieur et de la Recherche; C.C. was supported by a grant from the Agence Nationale pour la Recherche.

Author information

Authors and Affiliations

Authors

Contributions

J-S.A. and L.F. designed the study. E.B., J-S.A., S.L., V.A., V.F., C. Chavey and C. Clapé carried out the experiments. F.A., F.C. and J.A. provided reagents and data. J-S.A. and L.F. wrote the manuscript.

Corresponding authors

Correspondence to Emilie Blanchet, Jean-Sébastien Annicotte or Lluis Fajas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1874 kb)

Supplementary Table 1

Supplementary Information (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchet, E., Annicotte, JS., Lagarrigue, S. et al. E2F transcription factor-1 regulates oxidative metabolism. Nat Cell Biol 13, 1146–1152 (2011). https://doi.org/10.1038/ncb2309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing