Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A hybrid type Ia supernova with an early flash triggered by helium-shell detonation

Abstract

Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen1,2. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators3,4, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved2,5,6. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion7,8. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion–ejecta interaction8,9,10. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models—the helium-ignition branch—does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed11,12,13,14.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The multi-band light curve of MUSSES1604D.
Figure 2: Comparative analysis of MUSSES1604D colour evolution.
Figure 3: Rest-frame B- and V-band light curves of MUSSES1604D and simulations.
Figure 4: An around-maximum spectral comparison of MUSSES1604D, other observed type Ia supernovae of different types, and models.

Similar content being viewed by others

References

  1. Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Maoz, D., Mannucci, F. & Nelemans, G. Observational clues to the progenitors of type Ia supernovae. Annu. Rev. Astron. Astrophys. 52, 107–170 (2014)

    Article  ADS  CAS  Google Scholar 

  3. Perlmutter, S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    Article  ADS  MATH  Google Scholar 

  4. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Article  ADS  Google Scholar 

  5. Hillebrandt, W. & Niemeyer, J. C. Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys. 38, 191–230 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Whelan, J. & Iben, I. Jr. Binaries and supernovae of type I. Astrophys. J. 186, 1007–1014 (1973)

    Article  ADS  CAS  Google Scholar 

  7. Cao, Y. et al. A strong ultraviolet pulse from a newborn type Ia supernova. Nature 521, 328–331 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Kasen, D. Seeing the collision of a supernova with its companion star. Astrophys. J. 708, 1025–1031 (2010)

    Article  ADS  Google Scholar 

  9. Levanon, N., Soker, N. & García-Berro, E. Constraining the double-degenerate scenario for type Ia supernovae from merger ejected matter. Mon. Not. R. Astron. Soc. 447, 2803–2809 (2015)

    Article  ADS  Google Scholar 

  10. Piro, A. L. & Morozova, V. S. Exploring the potential diversity of early type Ia supernova light curves. Astrophys. J. 826, 96 (2016)

    Article  ADS  Google Scholar 

  11. Bildsten, L., Shen, K. J., Weinberg, N. N. & Nelemans, G. Faint thermonuclear supernovae from AM Canum Venaticorum binaries. Astrophys. J. 662, L95–L98 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Fink, M. et al. Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? Astron. Astrophys. 514, A53 (2010)

    Article  CAS  Google Scholar 

  13. Woosley, S. E. & Kasen, D. Sub-Chandrasekhar mass models for supernovae. Astrophys. J. 734, 38 (2011)

    Article  ADS  CAS  Google Scholar 

  14. Pakmor, R., Kromer, M., Taubenberger, S. & Springel, V. Helium-ignited violent mergers as a unified model for normal and rapidly declining type Ia supernovae. Astrophys. J. 770, L8 (2013)

    Article  ADS  CAS  Google Scholar 

  15. Miyazaki, S. et al. Hyper Suprime-Cam. Proc. SPIE 8446, http://doi.org/10.1117/12.926844 (2012)

  16. Guy, J. et al. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators. Astron. Astrophys. 466, 11–21 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Phillips, M. M. The absolute magnitudes of type IA supernovae. Astrophys. J. 413, L105–L108 (1993)

    Article  ADS  Google Scholar 

  18. Pan, K., Ricker, P. M. & Taam, R. E. Impact of type Ia supernova ejecta on binary companions in the single-degenerate scenario. Astrophys. J. 750, 151 (2012)

    Article  ADS  Google Scholar 

  19. Kutsuna, M. & Shigeyama, T. Revealing progenitors of type Ia supernovae from their light curves and spectra. Publ. Astron. Soc. Jpn 67, 54 (2015)

    Article  ADS  CAS  Google Scholar 

  20. Nomoto, K., Thielemann, F.-K. & Yokoi, K. Accreting white dwarf models for type I supern. III. Carbon deflagration supernovae. Astrophys. J. 286, 644–658 (1984)

    Article  ADS  CAS  Google Scholar 

  21. Khokhlov, A. M. Delayed detonation model for type IA supernovae. Astron. Astrophys. 245, 114–128 (1991)

    ADS  CAS  Google Scholar 

  22. Guillochon, J., Dan, M., Ramirez-Ruiz, E. & Rosswog, S. Surface detonations in double degenerate binary systems triggered by accretion stream instabilities. Astrophys. J. 709, L64–L69 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Kromer, M. et al. Double-detonation sub-Chandrasekhar supernovae: synthetic observables for minimum helium shell mass models. Astrophys. J. 719, 1067–1082 (2010)

    Article  ADS  CAS  Google Scholar 

  24. Boyle, A., Sim, S. A., Hachinger, S. & Kerzendorf, W. Helium in double-detonation models of type Ia supernovae. Astron. Astrophys. 599, A46 (2017)

    Article  ADS  CAS  Google Scholar 

  25. Noebauer, U. M. et al. Early light curves for type Ia supernova explosion models. Preprint at http://arxiv.org/abs/1706.03613 (2017)

  26. Shen, K. J. & Bildsten, L. The ignition of carbon detonations via converging shock waves in white dwarfs. Astrophys. J. 785, 61 (2014)

    Article  ADS  CAS  Google Scholar 

  27. Tanikawa, A. et al. Hydrodynamical evolution of merging carbon-oxygen white dwarfs: their pre-supernova structure and observational counterparts. Astrophys. J. 807, 40 (2015)

    Article  ADS  CAS  Google Scholar 

  28. Nomoto, K., Sugimoto, D. & Neo, S. Carbon deflagration supernova, an alternative to carbon detonation. Astrophys. Space Sci. 39, L37–L42 (1976)

    Article  ADS  Google Scholar 

  29. Blondin, S., Dessart, L., Hillier, D. J. & Khokhlov, A. M. Evidence for sub-Chandrasekhar-mass progenitors of type Ia supernovae at the faint end of the width–luminosity relation. Mon. Not. R. Astron. Soc. 470, 157–165 (2017)

    Article  ADS  CAS  Google Scholar 

  30. Shen, K. J., Kasen, D., Miles, B. J. & Townsley, D. M. Sub-Chandrasekhar-mass white dwarf detonations revisited. Preprint at http://arxiv.org/abs/1706.01898 (2017)

  31. Miyazaki, S. et al. Wide-field imaging with Hyper Suprime-Cam: cosmology and galaxy evolution. A strategic survey proposal for the Subaru telescope. http://hsc.mtk.nao.ac.jp/ssp/wp-content/uploads/2016/05/hsc_ssp_rv_jan13.pdf (2014)

  32. Bolton, A. S. et al. Spectral classification and redshift measurement for the SDSS-III baryon oscillation spectroscopic survey. Astron. J. 144, 144 (2012)

    Article  ADS  Google Scholar 

  33. Shimasaku, K. et al. Statistical properties of bright galaxies in the Sloan digital sky survey photometric system. Astron. J. 122, 1238–1250 (2001)

    Article  ADS  Google Scholar 

  34. Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010)

    Article  ADS  Google Scholar 

  35. GALFIT (https://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html)

  36. Stetson, P. B. DAOPHOT: a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pacif. 99, 191–222 (1987)

    Article  ADS  Google Scholar 

  37. Doi, M. et al. Photometric response functions of the Sloan digital sky survey imager. Astron. J. 139, 1628–1648 (2010)

    Article  ADS  CAS  Google Scholar 

  38. SNCosmo (https://sncosmo.readthedocs.io/en/v1.5.x/)

  39. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998)

    Article  ADS  Google Scholar 

  40. Maeda, K., Kutsuna, M. & Shigeyama, T. Signatures of a companion star in type Ia supernovae. Astrophys. J. 794, 37 (2014)

    Article  ADS  CAS  Google Scholar 

  41. Fryer, C. L. et al. Spectra of type Ia supernovae from double degenerate mergers. Astrophys. J. 725, 296–308 (2010)

    Article  ADS  CAS  Google Scholar 

  42. Shen, K. J., Bildsten, L., Kasen, D. & Quataert, E. The long-term evolution of double white dwarf mergers. Astrophys. J. 748, 35 (2012)

    Article  ADS  Google Scholar 

  43. Levanon, N. & Soker, N. Early UV emission from disk-originated matter (DOM) in type Ia supernovae in the double degenerate scenario. Mon. Not. R. Astron. Soc. 470, 2510–2516 (2017)

    Article  ADS  CAS  Google Scholar 

  44. Arnett, D. Supernovae and Nucleosynthesis: An Investigation of the History of Matter from the Big Bang to the Present (Princeton Univ. Press, 1996)

  45. Kasen, D., Thomas, R. C. & Nugent, P. Time-dependent Monte Carlo radiative transfer calculations for three-dimensional supernova spectra, light curves, and polarization. Astrophys. J. 651, 366–380 (2006)

    Article  ADS  Google Scholar 

  46. Kromer, M. & Sim, S. A. Time-dependent three-dimensional spectrum synthesis for type Ia supernovae. Mon. Not. R. Astron. Soc. 398, 1809–1826 (2009)

    Article  ADS  Google Scholar 

  47. Sim, S. A. et al. Detonations in sub-Chandrasekhar-mass C+O white dwarfs. Astrophys. J. 714, L52–L57 (2010)

    Article  ADS  CAS  Google Scholar 

  48. Shen, K. J. & Moore, K. The initiation and propagation of helium detonations in white dwarf envelopes. Astrophys. J. 797, 46 (2014)

    Article  ADS  CAS  Google Scholar 

  49. Nugent, P., Phillips, M., Baron, E., Branch, D. & Hauschildt, P. Evidence for a spectroscopic sequence among type 1a supernovae. Astrophys. J. 455, L147–L150 (1995)

    Article  ADS  CAS  Google Scholar 

  50. Piro, A. L. & Nakar, E. What can we learn from the rising light curves of radioactively powered supernovae? Astrophys. J. 769, 67 (2013)

    Article  ADS  CAS  Google Scholar 

  51. Piro, A. L. & Nakar, E. Constraints on shallow 56Ni from the early light curves of type Ia supernovae. Astrophys. J. 784, 85 (2014)

    Article  ADS  CAS  Google Scholar 

  52. Mazzali, P. A. et al. Hubble Space Telescope spectra of the type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z < Z . Mon. Not. R. Astron. Soc. 439, 1959–1979 (2014)

    Article  ADS  CAS  Google Scholar 

  53. Zheng, W. et al. Estimating the first-light time of the type Ia supernova 2014J in M82. Astrophys. J. 783, L24 (2014)

    Article  ADS  CAS  Google Scholar 

  54. Nugent, P. E. et al. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star. Nature 480, 344–347 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Cao, Y. et al. SN2002es-like supernovae from different viewing angles. Astrophys. J. 832, 86 (2016)

    Article  ADS  Google Scholar 

  56. Piro, A. L., Chang, P. & Weinberg, N. N. Shock breakout from type Ia supernova. Astrophys. J. 708, 598–604 (2010)

    Article  ADS  CAS  Google Scholar 

  57. Yaron, O. & Gal-Yam, A. WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pacif. 124, 668–681 (2012)

    Article  ADS  Google Scholar 

  58. Guillochon, J., Parrent, J., Kelley, L. Z. & Margutti, R. An open catalog for supernova data. Astrophys. J. 835, 64 (2017)

    Article  ADS  Google Scholar 

  59. Maguire, K. et al. PTF10ops—a subluminous, normal-width light curve type Ia supernova in the middle of nowhere. Mon. Not. R. Astron. Soc. 418, 747–758 (2011)

    Article  ADS  CAS  Google Scholar 

  60. Kromer, M. et al. SN 2010lp—a type Ia supernova from a violent merger of two carbon-oxygen white dwarfs. Astrophys. J. 778, L18 (2013)

    Article  ADS  CAS  Google Scholar 

  61. Foley, R. J. et al. SN 2006bt: a perplexing, troublesome, and possibly misleading type Ia supernova. Astrophys. J. 708, 1748–1759 (2010)

    Article  ADS  CAS  Google Scholar 

  62. Ganeshalingam, M. et al. Results of the Lick Observatory supernova search follow-up photometry program: BVRI light curves of 165 type Ia supernovae. Astrophys. J. Suppl. Ser. 190, 418–448 (2010)

    Article  ADS  Google Scholar 

  63. Scalzo, R. et al. Type Ia supernova bolometric light curves and ejected mass estimates from the nearby supernova factory. Mon. Not. R. Astron. Soc. 440, 1498–1518 (2014)

    Article  ADS  CAS  Google Scholar 

  64. Ciabattari, F. et al. Supernova 2012df = Psn J17481875+5218023. Central Bureau For Astronomical Telegrams No. 3161, http://www.cbat.eps.harvard.edu (2012)

  65. Kromer, M. et al. The peculiar type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger? Mon. Not. R. Astron. Soc. 459, 4428–4439 (2016)

    Article  ADS  CAS  Google Scholar 

  66. Ganeshalingam, M. et al. The low-velocity, rapidly fading type Ia supernova 2002es. Astrophys. J. 751, 142 (2012)

    Article  ADS  CAS  Google Scholar 

  67. Li, W. et al. SN 2002cx: the most peculiar known type Ia supernova. Publ. Astron. Soc. Pacif. 115, 453–473 (2003)

    Article  ADS  Google Scholar 

  68. Foley, R. J. et al. Type Iax supernovae: a new class of stellar explosion. Astrophys. J. 767, 57 (2013)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgements are contained within the Supplementary Information.

Author information

Authors and Affiliations

Authors

Contributions

J.J. initiated the study, carried out analysis and wrote the manuscript as the principal investigator of the MUSSES project. M.D. contributed to the initiation of the MUSSES project, and assisted with manuscript preparation and analysis together with K.M. and T.S. K.M. and T.S. organized the efforts for theoretical interpretation with J.J. and M.D. K.M. investigated the helium-detonation-triggered explosion models and conducted radiation-transfer calculations used to generate simulated light curves and spectra. T.S. developed and ran the radiation-transfer calculations used to generate simulated CEI-induced light curves. K.N. provided insights into the helium-detonation-triggered explosion models and assisted with analysis. N.Y., H.F. and S.M. are core software developers for HSC and are in charge of the HSC Subaru Strategic Program project. N.Y., N.T. and M.T. developed the HSC transient server for selecting real-time supernova candidates and contributed to Subaru/HSC observations and data reduction. T.M. contributed to the Subaru/HSC observations and to target-of-opportunity observations made with the 1.05-metre Kiso Schmidt telescope. S.W.J. contributed to SALT spectroscopy and data reduction. Ž.I., A.J.C., P.Y., P.R.-L., N.S., F.P., D.B., J.M., L.W., M.D.S., D.J., P.A.M. and C.A. are core collaborators of the MUSSES project who are in charge of follow-up observations (including proposal preparations) with the following telescopes: 3.5-metre ARC, 10.4-metre GTC, 8.1-metre VLT, 2.5-metre NOT, 2.5-metre INT and 2-metre LT. All of the authors contributed to discussions.

Corresponding author

Correspondence to Ji-an Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks P. Nugent and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Comparison of MUSSES1604D early-phase observations and the outcomes of different model simulations.

Shown are the observed g-band (purple filled circles), rest-frame B-band (purple open squares), V-band (light green open squares), and BV (blue filled circles) curves for MUSSES1604D at flash phase. The red solid lines show the results from our best-fitting helium-detonation model (with a white dwarf (WD) of mass 1.38M and a helium shell of mass 0.03M). ac, Early B-band (a) and V-band (b) light curves and BV colour evolution (c) generated by different CEI simulations observed from the companion side. Dashed lines correspond to K10 models involving different binary-system compositions (MS, main-sequence star; RG, red-giant star)8. The magenta line denotes our best-fitting K–S CEI model19. Although an early flash as bright as that of MUSSES1604D can be produced with specific CEI models, the predicted colour is very blue in the flash phase. d, e, V-band light curves simulated by CSM–ejecta interaction models (P16 model)10 with deep (d) and shallow (e) 56Ni distribution for the inner ejecta. Dotted lines correspond to an external mass (Me) of 0.3M with different outer radii, Re. f, Colour evolution, under the same assumptions as in e. Like the CEI models, the CSM–ejecta simulations generate combinations of early light curves and colour evolution that differ from the observed features of MUSSES1604D.

Extended Data Figure 2 Spectral evolution of MUSSES1604D and analogues.

Spectra for MUSSES1604D (dark green) are compared with those of the analogous type Ia supernovae SN 2006bt, SN 2007cq and SN 2012df at similar epochs. Late-phase spectra of SN 2011fe are included for reference. SALT/Robert Stobie Spectrograph (RSS) follow-up observations were carried out −2 and 12 days after the B-band maximum, and the other two spectra were taken by the Gemini Multi-Object Spectrograph (GMOS) mounted on the Gemini-North telescope 3 and 26 days after the B-band maximum.

Extended Data Figure 3 Rest-frame B- and V-band light curves for MUSSES1604D and other type Ia supernovae.

K-corrections in the flash phase (open squares) and post-flash phase (filled squares with dashed lines) of MUSSES1604D were carried out with different methods (see Methods). The light curves of MUSSES1604D, SN 2006bt and SN 2007cq show an excellent match. Another peculiar early-flash type Ia supernova, iPTF14atg, also shows similar light curves, although its brightness is about one magnitude fainter than that of MUSSES1604D. The light curves of a normal-brightness type Ia supernova—SN 2011fe (black dotted lines)—are provided for reference. Magnitudes shown are in the Vega system; error bars denote 1σ uncertainties.

Extended Data Figure 4 Early Subaru/HSC g-band images for MUSSES1604D.

The left panel shows the earliest Subaru/HSC image of MUSSES1604D (α(J2000) = 12 h 18 min 19.85 s, δ(J2000) = +00° 15′ 17.38″) taken on 4.345 April 2016 ut, when the g-band magnitude of MUSSES1604D was 25.14 ± 0.15. The supernova then brightened rapidly to about 23.1 mag in one day (right panel).

Extended Data Figure 5 Composition structures of models used for radiation-transfer simulations.

We used the composition structures shown here in helium-detonation simulations with a sub-Chandrasekhar-mass white dwarf (a, c) or a Chandrasekhar-mass white dwarf (b, d). The mass fractions of selected elements are shown as a function of velocity (a, b) or mass coordinate (c, d). The colours are the same for all panels.

Extended Data Figure 6 Density structures of the models used for radiation-transfer simulations.

The density structures (as a function of velocity) shown here are the input models used for the radiation-transfer simulations, representing helium-detonation models for a sub-Chandrasekhar-mass white dwarf (black dashed line) and a Chandrasekhar-mass white dwarf (red line).

Extended Data Table 1 Imaging observations of MUSSES1604D
Extended Data Table 2 Properties of MUSSES1604D- and iPTF14atg-like type Ia supernovae

Supplementary information

Supplementary Information

This file contains the full acknowledgements. (PDF 35 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Ja., Doi, M., Maeda, K. et al. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation. Nature 550, 80–83 (2017). https://doi.org/10.1038/nature23908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature23908

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing