Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

How sexual selection can drive the evolution of costly sperm ornamentation

Abstract

Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa1. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited1,2. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments3,4 in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences5,6,7,8,9. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male–male competition and female choice as discrete processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allometry of sperm length and egg volume.
Figure 2: Evolutionary allometry of Drosophila sperm length in comparison with other, classic examples of sexually selected traits.
Figure 3: Comparison of intraspecific condition dependence of sperm length and egg volume across seven Drosophila species.

Similar content being viewed by others

References

  1. Pitnick, S., Hosken, D. J. & Birkhead, T. R. in Sperm Biology: An Evolutionary Perspective (eds Birkhead, T. R., Hosken, D. J. & Pitnick, S. ) 69–149 (Academic Press, 2009)

  2. Eberhard, W. G. Female Control: Sexual Selection by Cryptic Female Choice. (Princeton University Press, 1996)

  3. Miller, G. T. & Pitnick, S. Sperm-female coevolution in Drosophila . Science 298, 1230–1233 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bjork, A. & Pitnick, S. Intensity of sexual selection along the anisogamy-isogamy continuum. Nature 441, 742–745 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Bateman, A. J. Intra-sexual selection in Drosophila . Heredity 2, 349–368 (1948)

    Article  CAS  PubMed  Google Scholar 

  6. Parker, G. A., Baker, R. R. & Smith, V. G. The origin and evolution of gamete dimorphism and the male-female phenomenon. J. Theor. Biol. 36, 529–553 (1972)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Trivers, R. L. in Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B. ) 136–179 (Aldine-Atherton, 1972)

  8. Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1977)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Clutton-Brock, T. H. & Parker, G. A. Potential reproductive rates and the operation of sexual selection. Q. Rev. Biol. 67, 437–456 (1992)

    Article  Google Scholar 

  10. Andersson, M. Sexual Selection. (Princeton University Press, 1994)

  11. Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860–864 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Bonduriansky, R. et al. Differential effects of genetic vs. environmental quality in Drosophila melanogaster suggest multiple forms of condition dependence. Ecol. Lett. 18, 317–326 (2015)

    Article  PubMed  Google Scholar 

  13. Rowe, L. & Houle, D. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. R. Soc. Lond. B 263, 1415–1421 (1996)

    Article  ADS  Google Scholar 

  14. Kodric-Brown, A., Sibly, R. M. & Brown, J. H. The allometry of ornaments and weapons. Proc. Natl Acad. Sci. USA 103, 8733–8738 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parker, G. A. & Pizzari, T. Sperm competition and ejaculate economics. Biol. Rev. Camb. Philos. Soc. 85, 897–934 (2010)

    PubMed  Google Scholar 

  16. Pattarini, J. M., Starmer, W. T., Bjork, A. & Pitnick, S. Mechanisms underlying the sperm quality advantage in Drosophila melanogaster . Evolution 60, 2064–2080 (2006)

    Article  PubMed  Google Scholar 

  17. Lüpold, S. et al. How multivariate ejaculate traits determine competitive fertilization success in Drosophila melanogaster . Curr. Biol. 22, 1667–1672 (2012)

    Article  PubMed  CAS  Google Scholar 

  18. Miller, G. T. & Pitnick, S. Functional significance of seminal receptacle length in Drosophila melanogaster . J. Evol. Biol. 16, 114–126 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Nijhout, H. F. & Emlen, D. J. Competition among body parts in the development and evolution of insect morphology. Proc. Natl Acad. Sci. USA 95, 3685–3689 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pitnick, S. Investment in testes and the cost of making long sperm in Drosophila . Am. Nat. 148, 57–80 (1996)

    Article  Google Scholar 

  21. Starmer, W. T. et al. in Evolutionary Biology (eds Macintyre, R. J. & Clegg, M. T. ) 139–171 (Springer, 2003)

  22. Wade, M. J. Sexual selection and variance in reproductive success. Am. Nat. 114, 742–747 (1979)

    Article  Google Scholar 

  23. Pitnick, S. S., Markow, T. A. & Spicer, G. S. Evolution of multiple kinds of female sperm-storage organs in Drosophila . Evolution 53, 1804–1822 (1999)

    PubMed  Google Scholar 

  24. Karr, T. L. & Pitnick, S. The ins and outs of fertilization. Nature 379, 405–406 (1996)

    CAS  Google Scholar 

  25. Pitnick, S., Spicer, G. S. & Markow, T. A. Phylogenetic examination of female incorporation of ejaculates in Drosophila . Evolution 51, 833–845 (1997)

    Article  PubMed  Google Scholar 

  26. Lüpold, S. et al. Female mediation of competitive fertilization success in Drosophila melanogaster . Proc. Natl Acad. Sci. USA 110, 10693–10698 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Bonduriansky, R. & Day, T. Nongenetic inheritance and the evolution of costly female preference. J. Evol. Biol. 26, 76–87 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. Partridge, L. & Farquhar, M. Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Anim. Behav. 31, 871–877 (1983)

    Article  Google Scholar 

  29. Pitnick, S., Markow, T. A. & Spicer, G. S. Delayed male maturity is a cost of producing large sperm in Drosophila . Proc. Natl Acad. Sci. USA 92, 10614–10618 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pitnick, S. & Markow, T. A. Large-male advantages associated with costs of sperm production in Drosophila hydei, a species with giant sperm. Proc. Natl Acad. Sci. USA 91, 9277–9281 (1994)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Manier, M. K. et al. Resolving mechanisms of competitive fertilization success in Drosophila melanogaster . Science 328, 354–357 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Parsons, P. A. & Hosgood, S. M. W. Genetic heterogeneity among the founders of laboratory populations of Drosophila. I. Scutellar chaetae. Genetica 38, 328–339 (1968)

    Article  CAS  PubMed  Google Scholar 

  33. Falconer, D. S. Introduction to Quantitative Genetics. (John Wiley & Sons, 1989)

  34. Markow, T. A. & O’Grady, P. Drosophila: A Guide to Species Identification and Use. (Academic Press, 2006)

  35. Lüpold, S., Tomkins, J. L., Simmons, L. W. & Fitzpatrick, J. L. Female monopolization mediates the relationship between pre- and postcopulatory sexual traits. Nat. Commun. 5, 3184 (2014)

    Article  ADS  PubMed  CAS  Google Scholar 

  36. Kawano, K. Sexual dimorphism and the making of oversized male characters in beetles (Coleoptera). Ann. Entomol. Soc. Am. 99, 327–341 (2006)

    Article  Google Scholar 

  37. Echelle, A. F., Echelle, A. A. & Fitch, H. S. Inter- and intraspecific allometry in a display organ: The dewlap of Anolis (Iguanidae) species. Copeia 1978, 245–250 (1978)

    Article  Google Scholar 

  38. Simmons, L. W. & Tomkins, J. L. Sexual selection and allometry of earwig forceps. Evol. Ecol. 10, 97–104 (1996)

    Article  Google Scholar 

  39. Pitnick, S. & Markow, T. A. Male gametic strategies: sperm size, testes size, and the allocation of ejaculate among successive mates by the sperm-limited fly Drosophila pachea and its relatives. Am. Nat. 143, 785–819 (1994)

    Article  Google Scholar 

  40. van der Linde, K., Houle, D., Spicer, G. S. & Steppan, S. J. A supermatrix-based molecular phylogeny of the family Drosophilidae. Genet. Res. 92, 25–38 (2010)

    Article  CAS  Google Scholar 

  41. Seetharam, A. S. & Stuart, G. W. Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments. PeerJ 1, e226 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rosenthal, R. Meta-Analytic Procedures for Social Research. (Sage, 1991)

  43. Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002)

    Article  CAS  PubMed  Google Scholar 

  44. Cockerham, C. C. & Weir, B. S. Quadratic analyses of reciprocal crosses. Biometrics 33, 187–203 (1977)

    Article  CAS  PubMed  MATH  Google Scholar 

  45. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits. (Sinauer Associates Inc, 1998)

  46. Fry, J. D. in Genetic Analysis of Complex Traits using SAS (ed. Saxton, A. M. ) 11–34 (SAS Institute Inc., 2004)

  47. Bilde, T., Friberg, U., Maklakov, A. A., Fry, J. D. & Arnqvist, G. The genetic architecture of fitness in a seed beetle: assessing the potential for indirect genetic benefits of female choice. BMC Evol. Biol. 8, 295 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics. (Longman, 1996)

  49. Crusio, W. E. Bi- and multivariate analyses of diallel crosses: a tool for the genetic dissection of neurobehavioral phenotypes. Behav. Genet. 23, 59–67 (1993)

    Article  CAS  PubMed  Google Scholar 

  50. Juenger, T. & Bergelson, J. The evolution of compensation to herbivory in scarlet gilia, Ipomopsis aggregata: herbivore-imposed natural selection and the quantitative genetics of tolerance. Evolution 54, 764–777 (2000)

    Article  CAS  PubMed  Google Scholar 

  51. Madge, S. & McGowan, P. Pheasants, Partridges, and Grouse: A Guide to the Pheasants, Partridges, Quails, Grouse, Guineafowl, Buttonquails, and Sandgrouse of the World. (Princeton University Press, 2002)

  52. Eo, S. H., Bininda-Emonds, O. R. P. & Carroll, J. P. A phylogenetic supertree of the fowls (Galloanserae, Aves). Zool. Scr. 38, 465–481 (2009)

    Article  Google Scholar 

  53. Lemaître, J. F., Vanpé, C., Plard, F. & Gaillard, J. M. The allometry between secondary sexual traits and body size is nonlinear among cervids. Biol. Lett. 10, 20130869 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moen, R. A., Pastor, J. & Cohen, Y. Antler growth and extinction of Irish elk. Evol. Ecol. Res. 1, 235–249 (1999)

    Google Scholar 

  55. Gould, S. J. The origin and function of ‘bizarre’ structures: Antler size and skull size in the ‘Irish Elk,’ Megaloceros giganteus. Evolution 28, 191–220 (1974)

    PubMed  Google Scholar 

  56. Plard, F., Bonenfant, C. & Gaillard, J.-M. Revisiting the allometry of antlers among deer species: male-male sexual competition as a driver. Oikos 120, 601–606 (2011)

    Article  Google Scholar 

  57. Bro-Jørgensen, J. The intensity of sexual selection predicts weapon size in male bovids. Evolution 61, 1316–1326 (2007)

    Article  PubMed  Google Scholar 

  58. Lüpold, S., Simmons, L. W., Tomkins, J. L. & Fitzpatrick, J. L. No evidence for a trade-off between sperm length and male premating weaponry. J. Evol. Biol. 28, 2187–2195 (2015)

    Article  PubMed  Google Scholar 

  59. Agnarsson, I. & May-Collado, L. J. The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Mol. Phylogenet. Evol. 48, 964–985 (2008)

    Article  CAS  PubMed  Google Scholar 

  60. Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. 19, 114–118 (2010)

    Article  Google Scholar 

  61. Bergmann, P. J. & Berk, C. P. The evolution of positive allometry of weaponry in horned lizards (Phrynosoma). Evol. Biol. 39, 311–323 (2012)

    Article  Google Scholar 

  62. Rowland, J. M. & Miller, K. B. Phylogeny and systematics of the giant rhinoceros beetles (Scarabaeidae: Dynastini). Insecta Mundi 0263, 1–15 (2012)

    Google Scholar 

  63. Simmons, L. W. & Emlen, D. J. Evolutionary trade-off between weapons and testes. Proc. Natl Acad. Sci. USA 103, 16346–16351 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baker, R. H. & Wilkinson, G. S. Phylogenetic analysis of sexual dimorphism and eye-span allometry in stalk-eyed flies (Diopsidae). Evolution 55, 1373–1385 (2001)

    Article  CAS  PubMed  Google Scholar 

  65. Knell, R. J., Pomfret, J. C. & Tomkins, J. L. The limits of elaboration: curved allometries reveal the constraints on mandible size in stag beetles. Proc. R. Soc. Lond. B 271, 523–528 (2004)

    Article  Google Scholar 

  66. Sharma, P. P., Buenavente, P. A. C., Clouse, R. M., Diesmos, A. C. & Giribet, G. Forgotten gods: Zalmoxidae of the Philippines and Borneo. Zootaxa 3280, 29–55 (2012)

    Article  Google Scholar 

  67. Roewer, C. F. & Weitere Weberknechte I. (1. Ergänzung der: ‘Weberknechte der Erde,’ 1923). Abhandlungen des Naturwissenschaftlichen Vereins zu Bremen 26, 261–402 (1927)

    Google Scholar 

  68. Forster, R. R. Further Australian harvestmen (Arachnida: Opiliones). Aust. J. Zool. 3, 354–411 (1955)

    Article  Google Scholar 

  69. Sharma, P. P. New Australasian Zalmoxidae (Opiliones: Laniatores) and a new case of male polymorphism in Opiliones. Zootaxa 3236, 1–35 (2012)

    Article  Google Scholar 

  70. Roewer, C. F. Die Weberknechte der Erde. Systematische Bearbeitung der bisher bekannten Opiliones. (Verlag von Oustav fiseher, 1923)

  71. Sharma, P. P. & Giribet, G. Out of the Neotropics: Late Cretaceous colonization of Australasia by American arthropods. Proc. R. Soc. Lond. B 279, 3501–3509 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors thank B. Reil for technical assistance and S. Dorus for helpful comments on the manuscript. Financial support for this research was provided by the National Science Foundation (grants DEB-9806649 to S.P. and DEB-1145965 to S.P., S.L., M.K.M. and J.M.B.), the Swiss National Science Foundation (Fellowships PA00P3_134191 and PZ00P3_154767 to S.L.), the National University of Singapore (Overseas Postdoctoral Fellowship to N.P.) and a generous gift from Mike and Jane Weeden to Syracuse University.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and S.L. conceived the research. S.P. and C.S. performed the reproductive potential experiments. S.P., C.S. and W.T.S. collected data for sperm and egg production allometry. S.L., S.P., M.K.M. and J.M.B. performed the male–female trait genetic covariance experiments. S.P., S.L., N.P. and S.H.B.L. performed the sperm length condition dependence experiment. S.L. and W.T.S. performed all statistical analyses. S.P. and S.L. wrote the paper.

Corresponding author

Correspondence to Scott Pitnick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Phylogeny for the Drosophila comparative analyses of gamete allometry.

Molecular phylogeny of the 46 species based on ref. 40, with species added based on refs. 29 and 41. Owing to a lack of information on branch lengths, equal branch lengths were used.

Extended Data Figure 2 Phylogeny of the Phasianinae.

Tree topology of the Phasianinae in Supplementary Table 1 based on the molecular phylogeny of ref. 52. Owing to a lack of information on branch lengths, equal branch lengths were used.

Extended Data Figure 3 Phylogeny of the Bovidae.

Tree topology of the Bovidae in Supplementary Table 2 based on the molecular phylogenies of the 10kTrees Project60 and ref. 59. Equal branch lengths were used because of combining different trees.

Extended Data Figure 4 Lacking condition dependence of sperm length.

a, b, Comparison of sperm length (a) and male thorax length (b) between flies reared under benign and moderately stressful conditions. Each line connects the means of a nuclear genotype (n = 45), based on measurements of the same five males in a and b, and the box plots reflect the between-genotype variation for each treatment. On average, sperm length did not differ between the benign (mean ± s.d. = 1.853 ± 0.019 mm) and moderately stressful treatments (1.851 ± 0.021 mm; linear mixed-effects model controlling for genetic background: t = −0.57, P = 0.58), thereby reflecting no condition dependence. By contrast, all males reared under stressful conditions were smaller (thorax length: 0.816 ± 0.019 mm versus 0.892 ± 0.026 mm; t = −17.08, P < 0.0001), thus being strongly condition-dependent and highlighting the relatively higher cost of sperm length for low-quality males.

Extended Data Figure 5 Variation in investment per sperm and in spermatogenesis.

ad, Intact male fly above his reproductive tract (a, b) and a single spermatozoon (c, d) for Drosophila arizonae (a, c) and D. bifurca (b, d). Top panels and bottom panels depict equal magnification, respectively. All photos by S.P.

Extended Data Figure 6 Condition dependence of male and female reproductive potential in seven Drosophila species.

an, Intraspecific relationships between reproductive potential and body size as a proxy of condition for males (ag) and females (hn) of seven Drosophila species. Species are ordered from shortest (top) to longest (bottom) sperm. Dotted lines represent ordinary least-squares slopes and, where these regressions were statistically significant, solid lines indicate RMA slopes. For detailed statistics see Extended Data Table 3.

Extended Data Figure 7 Comparison of intraspecific variation in female thorax length.

Box plot reflecting the greater intraspecific standard deviation in female thorax length in D. hydei compared to the remaining species (Bartlett’s test of homogeneity of variances: K2 = 12.67, P = 0.05).

Extended Data Table 1 Statistics of evolutionary allometries in different taxa
Extended Data Table 2 Comparative data set of Drosophila gamete and body size
Extended Data Table 3 Intraspecific analyses of condition dependence of reproductive potential

Supplementary information

Supplementary Tables

This file contains Supplementary Tables 1-3. (PDF 247 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lüpold, S., Manier, M., Puniamoorthy, N. et al. How sexual selection can drive the evolution of costly sperm ornamentation. Nature 533, 535–538 (2016). https://doi.org/10.1038/nature18005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature18005

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing