Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428

Abstract

The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (). The origin of their complex morphologies is poorly understood1, although several mechanisms involving binary interaction have been proposed2,3. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of 1.76, which is above the Chandrasekhar limit (the maximum mass of a stable white dwarf) of 1.4. This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event. This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae4.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Close-up view of the bipolar planetary nebula Henize 2-428.
Figure 2: Light-curve measurements and model.
Figure 3: Time evolution of the spectrum profile of Henize 2-428.
Figure 4: Radial-velocity measurements and orbit solution.

Similar content being viewed by others

References

  1. Balick, B. & Frank, A. Shapes and shaping of planetary nebulae. Annu. Rev. Astron. Astrophys. 40, 439–486 (2002)

    Article  ADS  Google Scholar 

  2. De Marco, O. The origin and shaping of planetary nebulae: putting the binary hypothesis to the test. Publ. Astron. Soc. Pacif. 121, 316–342 (2009)

    Article  ADS  Google Scholar 

  3. García-Arredondo, F. & Frank, A. Collimated outflow formation via binary stars: three-dimensional simulations of asymptotic giant branch wind and disk wind interactions. Astrophys. J. 600, 992–1003 (2004)

    Article  ADS  Google Scholar 

  4. Howell, D. A. et al. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443, 308–311 (2006)

    Article  ADS  Google Scholar 

  5. Boffin, H. M. J. & Miszalski, B. in Evolution of Compact Binaries (eds Schmidtobreick, L., Schreiber, M. R. & Tappert, C. ) Astron. Soc. Pacif. Conf. Ser. 447, 159–164 (2011)

    ADS  Google Scholar 

  6. Boffin, H. M. J. et al. An interacting binary system powers precessing outflows of an evolved star. Science 338, 773–775 (2012)

    Article  ADS  CAS  Google Scholar 

  7. Jones, D. et al. The post-common-envelope, binary central star of the planetary nebula Hen 2–11. Astron. Astrophys. 562, 89–97 (2014)

    Article  Google Scholar 

  8. Corradi, R. L. M. et al. The planetary nebula IPHASXJ211420.0+434136 (Ou5): insights into common-envelope dynamical and chemical evolution. Mon. Not. R. Astron. Soc. 441, 2799–2808 (2014)

    Article  ADS  CAS  Google Scholar 

  9. Miszalski, B., Acker, A., Parker, Q. A. & Moffat, A. F. J. Binary planetary nebulae nuclei towards the Galactic bulge. II. A penchant for bipolarity and low-ionisation structures. Astron. Astrophys. 505, 249–263 (2009b)

    Article  ADS  CAS  Google Scholar 

  10. Rodríguez, M., Corradi, R. L. M. & Mampaso, A. Evidence for binarity in the bipolar planetary nebulae He 2–428 and M 1–91. Astron. Astrophys. 377, 1042–1055 (2001)

    Article  ADS  Google Scholar 

  11. Schwarzenberg-Czerny, A. Fast and statistically optimal period search in uneven sampled observations. Astrophys. J. Lett. 460, L107–L110 (1996)

    Article  ADS  Google Scholar 

  12. Wilson, R. E. Eccentric orbit generalization and simultaneous solution of binary star light and velocity curves. Astrophys. J. 234, 1054–1066 (1979)

    Article  ADS  Google Scholar 

  13. Prsa, A., Matijevic, G., Latkovic, O., Vilardell, F. & Wils, P. PHOEBE: PHysics Of Eclipsing BinariEs (Astrophysics Source Code Library, 2011)

    Google Scholar 

  14. Stanghellini, L., Villaver, E., Manchado, A. & Guerrero, M. A. The correlations between planetary nebula morphology and central star evolution: analysis of the northern galactic sample. Astrophys. J. 576, 285–293 (2002)

    Article  ADS  Google Scholar 

  15. Jones, D., Santander-Garcia, M., Boffin, H. M. J., Miszalski, B. & Corradi, R. L. M. The morpho-kinematics of planetary nebulae with binary central stars. In Proc. Asymmetrical Planetary Nebulae VI Conf. (4–8 November 2013) (eds Morisset, C., Delgado-Inglada, G. & Torres-Peimbert, S. ) 43 (2014)

  16. Tovmassian, G. et al. The double-degenerate nucleus of the planetary nebula TS 01: a close binary evolution showcase. Astrophys. J. 714, 178–193 (2010)

    Article  ADS  Google Scholar 

  17. Bloecker, T. Stellar evolution of low- and intermediate-mass stars. II. Post-AGB evolution. Astron. Astrophys. 299, 755–769 (1995)

    ADS  Google Scholar 

  18. Chen, X. & Han, Z. Mass transfer from a giant star to a main-sequence companion and its contribution to long-orbital-period blue stragglers. Mon. Not. R. Astron. Soc. 387, 1416–1430 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Weidemann, V. Revision of the initial-to-final mass relation. Astron. Astrophys. 363, 647–656 (2000)

    ADS  CAS  Google Scholar 

  20. Paczyński, B. Evolutionary processes in close binary systems. Annu. Rev. Astron. Astrophys. 9, 183–208 (1971)

    Article  ADS  Google Scholar 

  21. Stroeer, A. et al. Hot subdwarfs from the ESO supernova Ia progenitor survey. II. Atmospheric parameters of subdwarf O stars. Astron. Astrophys. 462, 269–280 (2007)

    Article  ADS  CAS  Google Scholar 

  22. Shapiro, S. L. & Teukolsky, S. A. Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects (Wiley-Interscience, 1983)

    Book  Google Scholar 

  23. Schaefer, B. E. & Pagnotta, A. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509–67.5. Nature 481, 164–166 (2012)

    Article  ADS  CAS  Google Scholar 

  24. Rodríguez-Gil, P. et al. The orbital period of V458 Vulpeculae, a post-double common-envelope nova. Mon. Not. R. Astron. Soc. 407, L21–L25 (2010)

    Article  ADS  Google Scholar 

  25. Bruch, A., Vaz, L. P. R. & Diaz, M. P. An analysis of the light curve of the post common envelope binary MT Serpentis. Astron. Astrophys. 377, 898–910 (2001)

    Article  ADS  Google Scholar 

  26. Hillwig, T. C., Bond, H. E., Afşar, M. & De Marco, O. Binary central stars of planetary nebulae discovered through photometric variability. II. Modeling the central stars of NGC 6026 and NGC 6337. Astron. J. 140, 319–327 (2010)

    Article  ADS  CAS  Google Scholar 

  27. Hillwig, T. C. The current status of our understanding of the close binary central stars of planetary nebulae. In 18th European White Dwarf Workshop (eds Krzesiński, J., Stachowski, G., Moskalik, P. & Bajan, K. ) Astron. Soc. Pacif. Conf. Ser. 469, 277 (2013)

    ADS  Google Scholar 

  28. Davignon, G. et al. CCD camera and automatic data reduction pipeline for the Mercator telescope on La Palma. In Ground-based Instrumentation for Astronomy (eds Moorwood, A. F. M. & Iye, M. ) SPIE Conf. Ser. 5492, 871–879 (2004)

    ADS  Google Scholar 

  29. Raskin, G. et al. Mercator and the P7-2000 photometer. In Ground-based Instrumentation for Astronomy (eds Moorwood, A. F. M. & Iye, M. ) SPIE Conf. Ser. 5492, 830–840 (2004)

    ADS  Google Scholar 

  30. Fitzpatrick, E. L. Interstellar Extinction in the Milky Way Galaxy. In Astrophysics of Dust (eds Witt, A. N., Clayton, G. C. & Draine B. T. ), vol. 309 of Astron. Soc. Pacif. Conf. Ser. 309, 33–56 (2004)

    ADS  CAS  Google Scholar 

  31. Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, 75–79 (2011)

    Article  ADS  Google Scholar 

  32. Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. Preprint at http://arxiv.org/abs/astro-ph/0405087 (2004)

Download references

Acknowledgements

This work is based on observations made with the 1 m SAAO (South Africa Astronomical Observatory), the 1.2 m Mercator, the 2.5 m INT (Isaac Newton Telescope), the 4.2 m WHT (William Herschel Telescope), the 8.2 m VLT and the 10.4 m GTC telescopes. We are grateful to T. Marsh for the use of the PAMELA and MOLLY codes, to T. Hillwig, O. Pols and J. Alcolea for their comments and to J. García-Rojas and C. Zurita for the INT/WFC (Wide Field Camera) service observations. This work was partially supported by the Spanish MINECO within grants CSD2009–00038, AYA2012–35330, RYC–2010–05762 and AYA 2012–38700.

Author information

Authors and Affiliations

Authors

Contributions

M.S.-G., P.R.-G., D.J., M.M.R.-D., H.M.J.B. and M.M.K. conducted the observations at the various telescopes. M.S.-G., P.R.-G., D.J. and M.M.K. reduced the data. M.S.-G. performed the light-curve and radial-velocity-curve modelling, and wrote the paper. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to M. Santander-García.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santander-García, M., Rodríguez-Gil, P., Corradi, R. et al. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428. Nature 519, 63–65 (2015). https://doi.org/10.1038/nature14124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14124

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing