Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An electrically pumped polariton laser

Abstract

Conventional semiconductor laser emission relies on stimulated emission of photons1,2, which sets stringent requirements on the minimum amount of energy necessary for its operation3,4. In comparison, exciton–polaritons in strongly coupled quantum well microcavities5 can undergo stimulated scattering that promises more energy-efficient generation of coherent light by ‘polariton lasers’3,6. Polariton laser operation has been demonstrated in optically pumped semiconductor microcavities at temperatures up to room temperature7,8,9,10,11,12, and such lasers can outperform their weak-coupling counterparts in that they have a lower threshold density12,13. Even though polariton diodes have been realized14,15,16, electrically pumped polariton laser operation, which is essential for practical applications, has not been achieved until now. Here we present an electrically pumped polariton laser based on a microcavity containing multiple quantum wells. To prove polariton laser emission unambiguously, we apply a magnetic field and probe the hybrid light–matter nature of the polaritons. Our results represent an important step towards the practical implementation of polaritonic light sources and electrically injected condensates, and can be extended to room-temperature operation using wide-bandgap materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum well microcavity polariton diode and characteristics.
Figure 2: Spectral emission features in various excitation regimes.
Figure 3: Current-density dependency of the polariton diode emission.
Figure 4: Magnetic-field-dependent circular polarization spectra.
Figure 5: Zeeman splitting of the polaritonic emission.

Similar content being viewed by others

References

  1. Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits (Wiley, 1995)

    Google Scholar 

  2. Einstein, A. Strahlungs-emission und -absorption nach der Quantentheorie. Verh. Deutsch. Phys. Gesell. 18, 318–323 (1916)

    CAS  ADS  Google Scholar 

  3. Imamoğlu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996)

    Article  ADS  Google Scholar 

  4. Bernard, M. G. A. & Duraffourg, G. Laser conditions in semiconductors. Phys. Status Solidi B 1, 699–703 (1961)

    Article  CAS  ADS  Google Scholar 

  5. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    Article  CAS  ADS  Google Scholar 

  6. Kavokin, A. & Malpuech, G. Cavity Polaritons (Elsevier, 2003)

    Google Scholar 

  7. Deng, H. et al. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002)

    Article  CAS  ADS  Google Scholar 

  8. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006)

    Article  CAS  ADS  Google Scholar 

  9. Balili, R. et al. Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007)

    Article  CAS  ADS  Google Scholar 

  10. Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)

    Article  CAS  ADS  Google Scholar 

  11. Sun, L. et al. Room temperature one-dimensional polariton condensate in a ZnO microwire. Preprint at http://arxiv.org/abs/1007.4686 (2010)

  12. Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003)

    Article  CAS  ADS  Google Scholar 

  13. Tsotsis, J. et al. Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity. N. J. Phys. 14, 023060 (2012)

    Article  Google Scholar 

  14. Tsintzos, S. I. et al. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008)

    Article  CAS  ADS  Google Scholar 

  15. Bajoni, D. et al. Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B 77, 113303 (2008)

    Article  ADS  Google Scholar 

  16. Khalifa, A. A., Love, A. P. D., Krizhanovskii, D. N., Skolnick, M. S. & Roberts, J. S. Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities. Appl. Phys. Lett. 92, 061107 (2008)

    Article  ADS  Google Scholar 

  17. Bajoni, D., Senellart, P., Lemaître, A. & Bloch, J. Photon lasing in GaAs microcavity: similarities with a polariton condensate. Phys. Rev. B 76, 201305 (2007)

    Article  ADS  Google Scholar 

  18. Ohadi, H. et al. Spontaneous symmetry breaking in a polariton and photon laser. Phys. Rev. Lett. 109, 016404 (2012)

    Article  CAS  ADS  Google Scholar 

  19. Kulakovskii, V. D. et al. Magnetic field control of polarized polariton condensates in rectangular microcavity pillars. Phys. Rev. B 85, 155322 (2012)

    Article  ADS  Google Scholar 

  20. Wertz, E. et al. Spontaneous formation of a polariton condensate in a planar GaAs microcavity. Appl. Phys. Lett. 95, 051108 (2009)

    Article  ADS  Google Scholar 

  21. Kulakovskii, V. D. et al. Bose-Einstein condensation of exciton polaritons in high-Q planar microcavities with GaAs quantum wells. JETP Lett. 92, 595–599 (2010)

    Article  ADS  Google Scholar 

  22. Nelsen, B., Balili, R., Snoke, D. W., Pfeiffer, L. & West, K. Lasing and polariton condensation: two distinct transitions in GaAs microcavities with stress traps. J. Appl. Phys. 105, 122414 (2009)

    Article  ADS  Google Scholar 

  23. Dang, L. S., Heger, D., Andre, R., Boeuf, F. & Romestain, R. Stimulated emission of polariton luminescence in semiconductor microcavity. Phys. Rev. Lett. 81, 3920–3923 (1998)

    Article  CAS  ADS  Google Scholar 

  24. Kammann, E., Ohadi, H., Maragkou, M., Kavokin, A. V. & Lagoudakis, P. G. Crossover from photon to exciton-polariton lasing. N. J. Phys. 14, 105003 (2012)

    Article  Google Scholar 

  25. Keeling, J., Eastham, P. R., Szymanska, M. H. & Littlewood, P. B. BCS-BEC crossover in a system of microcavity polaritons. Phys. Rev. B 72, 115320 (2005)

    Article  ADS  Google Scholar 

  26. Byrnes, T., Horikiri, T., Ishida, N. & Yamamoto, Y. BCS wavefunction approach to the BEC-BCS crossover of exciton-polariton condensates. Phys. Rev. Lett. 105, 186402 (2010)

    Article  ADS  Google Scholar 

  27. Kappei, L., Szczytko, J., Morier-Genoud, F. & Deveaud, B. Direct observation of the Mott transition in an optically excited semiconductor quantum well. Phys. Rev. Lett. 94, 147403 (2005)

    Article  CAS  ADS  Google Scholar 

  28. Rahimi-Iman, A. et al. Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Phys. Rev. B 84, 165325 (2011)

    Article  ADS  Google Scholar 

  29. Larionov, A. V. et al. Polarized nonequilibrium Bose-Einstein condensates of spinor exciton polaritons in a magnetic field. Phys. Rev. Lett. 105, 256401 (2010)

    Article  CAS  ADS  Google Scholar 

  30. Rubo, Y. G., Kavokin, A. V. & Shelykh, I. A. Suppression of superfluidity of exciton-polaritons by magnetic field. Phys. Lett. A 358, 227–230 (2006)

    Article  CAS  ADS  Google Scholar 

  31. Tassone, F. & Yamamoto, Y. Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999)

    Article  CAS  ADS  Google Scholar 

  32. Kotlyar, R., Reinecke, T. L., Bayer, M. & Forchel, A. Zeeman spin splittings in semiconductor nanostructures. Phys. Rev. B 63, 085310 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State of Bavaria, the National Science Foundation and by JSPS through its FIRST programme. I.G.S. acknowledges support from the Eimskip foundation. I.A.S. acknowledges support from the ‘Center of excellence in polaritonics’, IRSES SPINMET and POLAPHEN projects. A.R.-I. acknowledges a German National Academic Foundation fellowship. The authors thank T. Sünner, I. Lederer and A. Schade for experimental and technical support.

Author information

Authors and Affiliations

Authors

Contributions

S.H. initiated the study and guided the work together with S.R., Y.Y. and A.F. C.S., M.L. and S.H. designed and grew the wafer and performed pre-characterization. A.W. and M.K. processed the devices. A.R.-I., J.F., N.Y.K., L.W. and S.R. established an electrical/optical Fourier-space spectroscopy setup. A.R.-I., J.F., M.A., C.S., S.H., N.Y.K. and S.R. performed experiments. A.R.-I., C.S. and M.A. analysed and interpreted the experimental data, supported by S.H., S.R., V.D.K., I.G.S. and I.A.S. C.S., A.R.-I. and S.H. wrote the manuscript, with input from all co-authors. C.S. and A.R.-I. contributed equally to the study.

Corresponding authors

Correspondence to Christian Schneider or Sven Höfling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-5 and Supplementary References. (PDF 560 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, C., Rahimi-Iman, A., Kim, N. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013). https://doi.org/10.1038/nature12036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12036

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing