Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small heat-shock proteins protect from heat-stroke-associated neurodegeneration

Abstract

Heat stroke is a life-threatening condition, characterized by catastrophic collapse of thermoregulation and extreme hyperthermia. In recent years, intensification of heat waves has caused a surge of heat-stroke fatalities. The mechanisms underlying heat-related pathology are poorly understood. Here we show that heat stroke triggers pervasive necrotic cell death and neurodegeneration in Caenorhabditis elegans. Preconditioning of animals at a mildly elevated temperature strongly protects from heat-induced necrosis. The heat-shock transcription factor HSF-1 and the small heat-shock protein HSP-16.1 mediate cytoprotection by preconditioning. HSP-16.1 localizes to the Golgi, where it functions with the Ca2+- and Mn2+-transporting ATPase PMR-1 to maintain Ca2+ homeostasis under heat stroke. Preconditioning also suppresses cell death inflicted by diverse insults, and protects mammalian neurons from heat cytotoxicity. These findings reveal an evolutionarily conserved mechanism that defends against diverse necrotic stimuli, and may be relevant to heat stroke and other pathological conditions involving necrosis in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heat preconditioning protects against extreme thermal stress through HSF-1 and HSP-16.1.
Figure 2: HSP-16. 1 localizes to the medial Golgi and functions together with PMR-1 to mediate the protective effect of preconditioning against heat stroke.
Figure 3: HSF-1 and HSP-16.1 mediate protection against necrosis inflicted by diverse insults upon preconditioning.
Figure 4: Preconditioning requires PMR-1 to alleviate heat-stroke-induced cytoplasmic Ca 2+ overload.
Figure 5: Heat preconditioning protects mammalian neurons against extreme thermal stress through crystallin αA and PMR1.
Figure 6: HSP-16.1 requires PMR-1 to suppress heat-stroke-induced necrosis and cytoplasmic Ca 2+ overload.

Similar content being viewed by others

References

  1. Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Rowlands, D. J. et al. Broad range of 2050 warming from an observationally constrained large climate model ensemble. Nature Geosci. 5, 256–260 (2012)

    Article  CAS  ADS  Google Scholar 

  3. Bouchama, A. & Knochel, J. P. Heat stroke. N. Engl. J. Med. 346, 1978–1988 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Dhopesh, V. P. & Burns, R. A. Loss of nerve conduction in heat stroke. N. Engl. J. Med. 294, 557–558 (1976)

    CAS  PubMed  Google Scholar 

  5. Hall, D. M. et al. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am. J. Physiol. Heart Circ. Physiol. 280, H509–H521 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Syntichaki, P., Xu, K., Driscoll, M. & Tavernarakis, N. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419, 939–944 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Xu, K., Tavernarakis, N. & Driscoll, M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca2+ release from the endoplasmic reticulum. Neuron 31, 957–971 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Kourtis, N. & Tavernarakis, N. Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J. 30, 2520–2531 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calabrese, E. J. Hormesis: a revolution in toxicology, risk assessment and medicine. EMBO Rep. 5, S37–S40 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Åkerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nature Rev. Mol. Cell Biol. 11, 545–555 (2010)

    Article  Google Scholar 

  11. McColl, G. et al. Insulin-like signaling determines survival during stress via posttranscriptional mechanisms in C. elegans. Cell Metab. 12, 260–272 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiang, W. C., Ching, T. T., Lee, H. C., Mousigian, C. & Hsu, A. L. HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell 148, 322–334 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genet. 28, 139–145 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Hsu, A. L., Murphy, C. T. & Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142–1145 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  15. An, J. H. & Blackwell, T. K. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev. 17, 1882–1893 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lindquist, S. & Craig, E. A. The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988)

    Article  CAS  PubMed  Google Scholar 

  17. Morimoto, R. I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22, 1427–1438 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morimoto, R. I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788–3796 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. Walker, G. A. & Lithgow, G. J. Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell 2, 131–139 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Morley, J. F. & Morimoto, R. I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657–664 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haslbeck, M., Franzmann, T., Weinfurtner, D. & Buchner, J. Some like it hot: the structure and function of small heat-shock proteins. Nature Struct. Mol. Biol. 12, 842–846 (2005)

    Article  CAS  Google Scholar 

  22. Lowe, M. Structural organization of the Golgi apparatus. Curr. Opin. Cell Biol. 23, 85–93 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. Missiaen, L., Dode, L., Vanoevelen, J., Raeymaekers, L. & Wuytack, F. Calcium in the Golgi apparatus. Cell Calcium 41, 405–416 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Van Baelen, K. et al. The Ca2+/Mn2+ pumps in the Golgi apparatus. Biochim. Biophys. Acta 1742, 103–112 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Pinton, P., Pozzan, T. & Rizzuto, R. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J. 17, 5298–5308 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McCall, K. Genetic control of necrosis — another type of programmed cell death. Curr. Opin. Cell Biol. 22, 882–888 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Syntichaki, P. & Tavernarakis, N. The biochemistry of neuronal necrosis: rogue biology? Nature Rev. Neurosci. 4, 672–684 (2003)

    Article  CAS  Google Scholar 

  28. Michelangeli, F., Ogunbayo, O. A. & Wootton, L. L. A plethora of interacting organellar Ca2+ stores. Curr. Opin. Cell Biol. 17, 135–140 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Ferri, K. F. & Kroemer, G. Organelle-specific initiation of cell death pathways. Nature Cell Biol. 3, E255–E263 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Rutkowski, D. T. et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 4, e374 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  32. Richardson, C. E., Kinkel, S. & Kim, D. H. Physiological IRE-1-XBP-1 and PEK-1 signaling in Caenorhabditis elegans larval development and immunity. PLoS Genet. 7, e1002391 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoneda, T. et al. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J. Cell Sci. 117, 4055–4066 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. Lithgow, G. J., White, T. M., Melov, S. & Johnson, T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl Acad. Sci. USA 92, 7540–7544 (1995)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  35. Lin, P., Yao, Y., Hofmeister, R., Tsien, R. Y. & Farquhar, M. G. Overexpression of CALNUC (nucleobindin) increases agonist and thapsigargin releasable Ca2+ storage in the Golgi. J. Cell Biol. 145, 279–289 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Baelen, K., Vanoevelen, J., Missiaen, L., Raeymaekers, L. & Wuytack, F. The Golgi PMR1 P-type ATPase of Caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport. J. Biol. Chem. 276, 10683–10691 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. Yamashima, T. et al. Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus 13, 791–800 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. Cao, S., Gelwix, C. C., Caldwell, K. A. & Caldwell, G. A. Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J. Neurosci. 25, 3801–3812 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scott, B. A., Avidan, M. S. & Crowder, C. M. Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296, 2388–2391 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  40. Yamashima, T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog. Neurobiol. 62, 273–295 (2000)

    Article  CAS  PubMed  Google Scholar 

  41. Bibel, M., Richter, J., Lacroix, E. & Barde, Y. A. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nature Protocols 2, 1034–1043 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. Brady, J. P. et al. Targeted disruption of the mouse αA-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein αB-crystallin. Proc. Natl Acad. Sci. USA 94, 884–889 (1997)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  43. Shull, G. E. et al. Physiological functions of plasma membrane and intracellular Ca2+ pumps revealed by analysis of null mutants. Ann. NY Acad. Sci. 986, 453–460 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  44. van Montfort, R. L., Basha, E., Friedrich, K. L., Slingsby, C. & Vierling, E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nature Struct. Biol. 8, 1025–1030 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. Gidday, J. M. Cerebral preconditioning and ischaemic tolerance. Nature Rev. Neurosci. 7, 437–448 (2006)

    Article  CAS  Google Scholar 

  46. Lehotský, J. et al. Ion transport systems as targets of free radicals during ischemia reperfusion injury. Gen. Physiol. Biophys. 21, 31–37 (2002)

    PubMed  Google Scholar 

  47. Pavlíková, M. et al. Alterations induced by ischemic preconditioning on secretory pathways Ca2+-ATPase (SPCA) gene expression and oxidative damage after global cerebral ischemia/reperfusion in rats. Cell. Mol. Neurobiol. 29, 909–916 (2009)

    Article  PubMed  Google Scholar 

  48. Greffrath, W., Kirschstein, T., Nawrath, H. & Treede, R. Changes in cytosolic calcium in response to noxious heat and their relationship to vanilloid receptors in rat dorsal root ganglion neurons. Neuroscience 104, 539–550 (2001)

    Article  CAS  PubMed  Google Scholar 

  49. Lanner, J. T. e. t. a. l. AICAR prevents heat-induced sudden death in RyR1 mutant mice independent of AMPK activation. Nature Med. 18, 244–251 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. Protasi, F., Paolini, C. & Dainese, M. Calsequestrin-1: a new candidate gene for malignant hyperthermia and exertional/environmental heat stroke. J. Physiol. 587, 3095–3100 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gitler, A. D. et al. The Parkinson's disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc. Natl Acad. Sci. USA 105, 145–150 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  53. Artal-Sanz, M., Samara, C., Syntichaki, P. & Tavernarakis, N. Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J. Cell Biol. 173, 231–239 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rostaing, P., Weimer, R. M., Jorgensen, E. M., Triller, A. & Bessereau, J. L. Preservation of immunoreactivity and fine structure of adult C. elegans tissues using high-pressure freezing. J. Histochem. Cytochem. 52, 1–12 (2004)

    Article  CAS  PubMed  Google Scholar 

  55. Bibel, M., Richter, J., Lacroix, E. & Barde, Y. A. Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nature Protocols 2, 1034–1043 (2007)

    Article  CAS  PubMed  Google Scholar 

  56. von Blume, J. et al. ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1. Dev. Cell 20, 652–662 (2011)

    Article  CAS  PubMed  Google Scholar 

  57. Gascón, S., Paez-Gomez, J. A., Diaz-Guerra, M., Scheiffele, P. & Scholl, F. G. Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons. J. Neurosci. Methods 168, 104–112 (2008)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Georgila, K. Palikaras and E. Bessa for help with cell-death assays, A. Pasparaki for technical support with experiments and C. Olendrowitz for help with electron microscopy. We thank S. Eimer for providing the Golgi and endosomal reporter constructs and for support with the electron microscopy, N. Chronis for providing the pN1-GCaMP2.0 plasmid, G. Caldwell for the α-synuclein-expressing C. elegans strain and K. Palikaras for the skn-1 RNAi plasmid. We thank J. Vanoevelen and F. Wuytack for the antibody against PMR-1, S. Mitrovic for the antibody against mannosidase II, G. Sourvinos for lentiviral plasmids, and S. Gascon for the pLV plasmid. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the National Center for Research Resources (NCRR) of the National Institutes of Health (NIH), and S. Mitani (National Bioresource Project) in Japan. We thank A. Fire for plasmid vectors. V.N. is supported by an European Molecular Biology Organization (EMBO) Long Term Fellowship. This work was funded by grants from the European Research Council (ERC) and the European Commission 7th Framework Programme.

Author information

Authors and Affiliations

Authors

Contributions

N.K., V.N. and N.T. designed and carried out experiments. N.K. and N.T. analysed data and wrote the manuscript.

Corresponding author

Correspondence to Nektarios Tavernarakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1 and Supplementary Figures 1-22. (PDF 10020 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kourtis, N., Nikoletopoulou, V. & Tavernarakis, N. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature 490, 213–218 (2012). https://doi.org/10.1038/nature11417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11417

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing