Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the thermal evolution of deep-water continental margins

Abstract

Areas of exploration for new hydrocarbons are changing as the hydrocarbon industry seeks new resources for economic and political reasons. Attention has turned from easily accessible onshore regions such as the Middle East to offshore continental shelves. Over the past ten years, there has been a marked shift towards deep-water continental margins (500–2,500 m below sea level). In these more hostile regions, the risk and cost of exploration is higher, but the prize is potentially enormous. The key to these endeavours is a quantitative understanding of the structure and evolution of the thinned crust and lithosphere that underlie these margins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exploration at deep-water margins.
Figure 2: Margin categories in the Atlantic Ocean.
Figure 3: Structure and evolution of extensional margins.
Figure 4: Strain rate and heat flow at margins.
Figure 5: Animated margin evolution.
Figure 6: Structural and thermal maturation offshore of West Africa.
Figure 7: Three-dimensional imaging of an oil field.

Similar content being viewed by others

References

  1. C. Kuykendall . M. K. Hubbert and his Heirs: A Hubbert Peak Half-Biographraphy at 〈http://www.oilcrisis.com/library/hubheir.pdf〉 (2003).

    Google Scholar 

  2. The Association for the Study of Peak Oil & Gas 〈http://www.peakoil.net

  3. Parrish, J. T. Palaeo-upwelling and the Distribution of Organic-Rich Rocks. 199–205 (Spec. Publ. 26, Geol. Soc. Lond., 1987).

    Google Scholar 

  4. Milliman, J. D. & Syvitski, J. P. M. Geomorphic tectonic control of sediment discharge to the oceanó the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Article  ADS  Google Scholar 

  5. Kuenen, P. H. & Migliorini, C. Tubidity currents as a cause of graded bedding. J. Geol. 58, 91–127 (1950).

    Article  ADS  Google Scholar 

  6. Douglas-Westwood & Infield Systems. The World Deep-Water Report IV 2003-2007 at 〈http://www.infield.com/Deepwater-Report2003-2007.html〉 (2003).

  7. Steckler, M. S. & Watts, A. B. Subsidence of the Atlantic continental margin off New York. Earth Planet. Sci. Lett. 41, 1–13 (1978).

    Article  ADS  Google Scholar 

  8. McKenzie, D. P. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40, 25–32 (1978).

    Article  ADS  Google Scholar 

  9. Le Pichon, X. & Sibuet, J.-C Passive margins: a model of formation. J. Geophys. Res. 86, 3708–3720 (1981).

    Article  ADS  Google Scholar 

  10. Louden, K. E., Sibuet, J.-C & Foucher, J.-P Variations in heat flow across the Goban Spur and Galicia Bank continental margins. J. Geophys. Res. 96, 16131–16150 (1991).

    Article  ADS  Google Scholar 

  11. Louden, K. E., Sibuet, J.-C & Harmegnies, F. Variations in heatflow across the ocean-continent transition in the Iberian abyssal plain. Earth Planet. Sci. Lett. 151, 233–254 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Foucher, J. P. et al. Heatflow in the Valentia Trough: geodynamic implications. Tectonophysics 203, 77–97 (1992).

    Article  ADS  Google Scholar 

  13. White, R. S. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989).

    Article  ADS  Google Scholar 

  14. Holbrook,W. S. et al. Mantle thermal structure and active upwelling during continental break-up in the North Atlantic. Earth Planet. Sci. Lett. 190, 251–266 (2001).

    Article  ADS  CAS  Google Scholar 

  15. Nottvedt, A. et al. Dynamics of the Norwegian Continental margin. (Spec. Pub., Geol. Soc. Lond., 2000).

    Google Scholar 

  16. Louden, K. E. & Chian, D. The deep structure of non-volcanic rifted continental margins. Phil. Trans. R. Soc. Lond. 357, 767–805 (1999).

    Article  ADS  Google Scholar 

  17. Whitmarsh, R. B., Manatschal, G. & Minshull, T. A. Evolution of magma-poor continental margins from rifting to sea-floor spreading. Nature 413, 150–155 (2001).

    Article  ADS  CAS  Google Scholar 

  18. Minshull, T. A. The break-up of continents and the formation of new ocean basins. Phil. Trans. R. Soc. Lond. 360, 2839–2852 (2002).

    Article  ADS  CAS  Google Scholar 

  19. Bown, J. W. & White, R. S. in Rifted Ocean-Continent Boundaries (eds Banda, E., Torné, M. & Talwani, M.)(Kluwer, Dordrecht, 1995).

    Google Scholar 

  20. Chian, D. & Louden, K. E. Crustal structure of the Labrador Sea conjugate margin and implications for the formation of non-volcanic continental margins. J. Geophys. Res. 100, 24239–24253 (1995).

    Article  ADS  Google Scholar 

  21. Holbrook, W. S. & Kelemen, P. B. Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup. Nature 364, 433–364 (1993).

    Article  ADS  Google Scholar 

  22. Bauer, K. et al. Deep structure of the Namibia continental margin as derived from integrated geophysical studies. J. Geophys. Res. 105, 25829–25853 (2000).

    Article  ADS  Google Scholar 

  23. Watts, A. B. & Stewart, J. Gravity anomalies and segmentation of the continental margin offshore West Africa. Earth Planet. Sci. Lett. 156, 239–252 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Haines, A. J. & Holt, W. E. A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data. J. Geophys. Res. 98, 12057–12082 (1993).

    Article  ADS  Google Scholar 

  25. Holt, W. E., Chamot-Rooke, N., Le Pichon, X., Haines, A. J., Shen-Tu, B. & Ren, J. The velocity field in Asia inferred from Quaternary fault slip rates and GPS observations. J. Geophys. Res. 105, 19185–19210 (2000).

    Article  ADS  Google Scholar 

  26. Bassi, G. Relative importance of strain rate and rheology for the mode of continental extension. Geophys. J. Int. 122, 195–210 (1995).

    Article  ADS  Google Scholar 

  27. Newman, R. & White, N. The dynamics of extensional sedimentary basins: constraints from subsidence inversion. Phil. Trans. R. Soc. Lond. 357, 805–830 (1999).

    Article  ADS  Google Scholar 

  28. White, N. An inverse method for determining lithospheric strain rate variation on geological timescales. Earth Planet. Sci. Lett. 122, 351–371 (1994).

    Article  ADS  Google Scholar 

  29. Bellingham, P. & White, N. A general inverse method for modelling extensional sedimentary basins. Basin Res. 12, 219–226 (2000).

    Article  ADS  Google Scholar 

  30. White, N. & Bellingham, P. A. Two-dimensional inverse model for extensional sedimentary basins: 1. Theory. J. Geophys. Res. 107, doi10.1029/2001JB000173 (2002).

  31. Davis, M. & Kusznir, N. Are buoyancy forces important during the formation of rifted margins? Geophys. J. Int. 149, 524–533 (2002).

    Article  ADS  Google Scholar 

  32. Kreemer, C., Haines, J., Holt, W. E., Blewitt, G. & Lavalle, D. On the determination of a global strain rate model. Earth Planets Space 52, 765–770 (2000).

    Article  ADS  Google Scholar 

  33. Burnham, A. K. & Sweeney, J. J. A chemical kinetic model of vitrinite maturation and reflectance. Geochim. Cosmo. Acta 53, 2649–2657 (1989).

    Article  ADS  CAS  Google Scholar 

  34. Marton, L. G., Tari, G. C. & Lehmann, C. T. in Atlantic Rifts and Continental Margins Geophys. Monogr. 115 (eds W. Mohriak & M. Talwani) (Am. Geophys. Union, 2000).

    Google Scholar 

  35. Wessel P. & Smith W. H. F. New version of the Generic Mapping Tools released. Eos 76, 329 (1995).

    Article  ADS  Google Scholar 

  36. Malvern, L. E. Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Old Tappan, NJ, 1969).

    Google Scholar 

  37. England, P. & McKenzie, D. A thin viscous sheet model for continental deformation. Geophys. J. R. Astron. Soc. 70, 295–321 (1982).

    Article  ADS  Google Scholar 

  38. Beavan, J. & Haines, J. Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand. J. Geophys. Res. 106, 741–770 (2001).

    Article  ADS  Google Scholar 

  39. Lucazeau, F. & Le Douaran, S. The blanketing effect of sediments in basins formed by extension: a numerical model. Application to the Gulf of Lion and Viking Graben. Earth Planet. Sci. Lett. 74, 92–102 (1985).

    Article  ADS  Google Scholar 

  40. Gallagher, K., Ramsdale, M., Lonergan, L. & Morrow, D. The role of thermal conductivity measurements in modelling thermal histories in sedimentary basins. Mar. Petrol. Geol. 14, 201–214 (1997).

    Article  Google Scholar 

  41. Zoeppritz, K. Erdbebenwellen VIII B, Uber Reflexion und durchgang seismischer wellen durch unStetigkeitsflachen. Gottinger Nachr. 1, 66–84 (1919).

    MATH  Google Scholar 

  42. Aki, K. I. & Richards, P. G. Quantitative Seismology (W.H. Freeman, New York, 1980).

    Google Scholar 

  43. Shuey, R. T. A simplification of the Zoeppritz equations. Geophysics 50, 609–614 (1985).

    Article  ADS  Google Scholar 

  44. Gassmann, F. Uber die Elastizitat poroser Medien. Veirteljahr Naturforsch Gese. Zurich 96, 1–23 (1951).

    MathSciNet  MATH  Google Scholar 

  45. Rutherford, S. R. & Williams, R. H. Amplitude-versus-offset variations in gas sands. Geophysics 54, 680–688 (1989).

    Article  ADS  Google Scholar 

  46. Pegrum, R. M., Odegard, T., Bonde, K. & Hamann, N. E. Exploration in the Fylla area, SW Greenland. Am. Assoc. Petrol. Geol. (Regional Conference St Petersburg, 15–18 July, 2001).

Download references

Acknowledgements

We thank K. Gallagher for peer review. S. Jones allowed us to show his unpublished basin animations (Fig. 5). A. Butler, R. Hardy, S. Jones, G. Kirby, D. Lyness, B. Lovell, M. Mayall, T. Minshull and J.-C. Sempere provided substantial help. We are grateful to BP, Sonangol and partners for permission to publish this paper and especially the seismic section and amplitude maps of Fig. 7. Some figures were prepared using GMT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicky White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, N., Thompson, M. & Barwise, T. Understanding the thermal evolution of deep-water continental margins. Nature 426, 334–343 (2003). https://doi.org/10.1038/nature02133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02133

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing