Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Nature
  • Published:

Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13

Abstract

Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum1,2, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3–9 and 13 of P. falciparum clone 3D7—these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scatter graphs of virtual restriction digests of completed chromosomes and pseudo-chromosomes against optical map fragment sizes.
Figure 2: Comparison of the percentage of annotations with specific Gene Ontology terms on each chromosome.
Figure 3: Position and structure of var-related (G + C)-rich elements.

References

  1. Gardner, M. J. et al. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282, 1126–1132 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Bowman, S. et al. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature 400, 532–538 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Su, X. et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286, 1351–1353 (1999)

    Article  CAS  Google Scholar 

  4. Lai, Z. et al. A shotgun optical map of the entire Plasmodium falciparum genome. Nature Genet. 23, 309–313 (1999)

    Article  CAS  Google Scholar 

  5. de Bruin, D., Lanzer, M. & Ravetch, J. V. Characterization of yeast artificial chromosomes from Plasmodium falciparum: construction of a stable, representative library and cloning of telomeric DNA fragments. Genomics 14, 332–339 (1992)

    Article  CAS  Google Scholar 

  6. Glockner, G. et al. Sequence and analysis of chromosome 2 of Dictyostelium discoideum. Nature 418, 79–85 (2002)

    Article  ADS  Google Scholar 

  7. Piper, M. B., Bankier, A. T. & Dear, P. H. A HAPPY map of Cryptosporidium parvum. Genome Res. 8, 1299–1307 (1998)

    Article  CAS  Google Scholar 

  8. Konfortov, B. A., Cohen, H. M., Bankier, A. T. & Dear, P. H. A high-resolution HAPPY map of Dictyostelium discoideum chromosome 6. Genome Res. 10, 1737–1742 (2000)

    Article  CAS  Google Scholar 

  9. Berriman, M., Aslett, M. & Ivens, A. Parasites are GO. Trends Parasitol. 17, 463–464 (2001)

    Article  CAS  Google Scholar 

  10. Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Pachebat, J. A. et al. The 22 kDa component of the protein complex on the surface of Plasmodium falciparum merozoites is derived from a larger precursor, merozoite surface protein 7. Mol. Biochem. Parasitol. 117, 83–89 (2001)

    Article  CAS  Google Scholar 

  12. Lasonder, E. et al. Analysis of the Plasmodium falciparum proteome by high accuracy mass spectrometry. Nature 419, 531–542 (2002)

    Article  ADS  Google Scholar 

  13. Figueiredo, L. M., Freitas-Junior, L. H., Bottius, E., Olivo-Marin, J. C. & Scherf, A. A central role for Plasmodium falciparum subtelomeric regions in spatial positioning and telomere length regulation. EMBO J. 21, 815–824 (2002)

    Article  CAS  Google Scholar 

  14. O'Donnell, R. A. et al. A genetic screen for improved plasmid segregation reveals a role for Rep20 in the interaction of Plasmodium falciparum chromosomes. EMBO J. 21, 1231–1239 (2002)

    Article  CAS  Google Scholar 

  15. Katinka, M. D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450–453 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Hyman, R., Fung, E. & Dennis, R. W. et al. Sequence of Plasmodium falciparum chromosome 12. Nature 419, 534–536 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Hapgood, J. P., Riedemann, J. & Scherer, S. D. Regulation of gene expression by GC-rich DNA cis-elements. Cell Biol. Int. 25, 17–31 (2001)

    Article  CAS  Google Scholar 

  18. Adhya, S. Multipartite genetic control elements: communication by DNA loop. Annu. Rev. Genet. 23, 227–2250 (1989)

    Article  CAS  Google Scholar 

  19. Deitsch, K. W., Calderwood, M. S. & Wellems, T. E. Malaria. Cooperative silencing elements in var genes. Nature 412, 875–876 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Vazquez-Macias, A. et al. A distinct 5′ flanking var gene region regulates Plasmodium falciparum variant erythrocyte surface antigen expression in placental malaria. Mol. Microbiol. 45, 155–167 (2002)

    Article  CAS  Google Scholar 

  21. Quail, M. A. M13 cloning of mung bean nuclease digested PCR fragments as a means of gap closure within A/T-rich, genome sequencing projects. DNA Seq. 12, 355–359 (2001)

    Article  CAS  Google Scholar 

  22. Rutherford, K. et al. Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945 (2000)

    Article  CAS  Google Scholar 

  23. Salzberg, S. L., Pertea, M., Delcher, A. L., Gardner, M. J. & Tettelin, H. Interpolated Markov models for eukaryotic gene finding. Genomics 59, 24–31 (1999)

    Article  CAS  Google Scholar 

  24. Cawley, S. E., Wirth, A. I. & Speed, T. P. Phat—a gene finding program for Plasmodium falciparum. Mol. Biochem. Parasitol. 118, 167–174 (2001)

    Article  CAS  Google Scholar 

  25. Zdobnov, E. M. & Apweiler, R. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001)

    Article  CAS  Google Scholar 

  26. Sonnhammer, E. L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182 (1998)

    CAS  PubMed  Google Scholar 

  27. Nielsen, H., Brunak, S. & von Heijne, G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 12, 3–9 (1999)

    Article  CAS  Google Scholar 

  28. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000)

    Article  CAS  Google Scholar 

  29. Apweiler, R. et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 29, 37–40 (2001)

    Article  CAS  Google Scholar 

  30. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002)

    Article  CAS  Google Scholar 

  31. Emanuelsson, O., Nielsen, H., Brunak, S. & von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000)

    Article  CAS  Google Scholar 

  32. Claros, M. G. & Vincens, P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779–786 (1996)

    Article  CAS  Google Scholar 

  33. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff in the computer support and software development groups; J. Thompson and A. Cowman for gifts of YAC clones and for advice; D. Schwartz for optical map data; X. Su for genetic map information; Y. Shaw for help with Fig. 1; M. Harris and M. Ashburner for assistance with the parasite specific GO terms; O. White and M. Gardner for Table 1 and supplementary figures; the other members of the Malaria Genome Sequencing Consortium for discussions; and The Wellcome Trust Plasmodium Genome Mapping Consortium. This work was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hall.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, N., Pain, A., Berriman, M. et al. Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13. Nature 419, 527–531 (2002). https://doi.org/10.1038/nature01095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01095

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing