Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial

An Erratum to this article was published on 01 January 2001

Abstract

In this ‘double-blind’, randomized, placebo-controlled phase II trial, we compared an altered peptide ligand of myelin basic protein with placebo, evaluating their safety and influence on magnetic resonance imaging in relapsing–remitting multiple sclerosis. A safety board suspended the trial because of hypersensitivity reactions in 9% of the patients. There were no increases in either clinical relapses or in new enhancing lesions in any patient, even those with hypersensitivity reactions. Secondary analysis of those patients completing the study showed that the volume and number of enhancing lesions were reduced at a dose of 5 mg. There was also a regulatory type 2 T helper-cell response to altered peptide ligand that cross-reacted with the native peptide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of weekly administration of NBI 5788 or placebo on peripheral blood cell cytokine response and production of antibodies against NBI 5788.
Figure 2: Effects of weekly administration of NBI 5788 or placebo on peripheral blood cell cytokine response to MBP(83–99).

Similar content being viewed by others

References

  1. Martin, R., McFarland, H.F. & McFarlin, D.E. Immunological aspects of demyelinating diseases. Annu. Rev. Immunol. 10, 153–187 (1992).

    Article  CAS  Google Scholar 

  2. Steinman, L. Multiple sclerosis: A coordinated immunological attack against myelin in the central nervous system. Cell 85, 299– 302 (1996).

    Article  CAS  Google Scholar 

  3. Noseworthy, J.H. Progress in determining the causes and treatment of multiple sclerosis. Nature 399, A40–47 ( 1999).

    Article  CAS  Google Scholar 

  4. Ebers, G.C. et al. A full genome search in multiple sclerosis. Nature Genetics 13, 472–476 ( 1996).

    Article  CAS  Google Scholar 

  5. Sawcer, S. et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genet. 13 , 464–468 (1996).

    Article  CAS  Google Scholar 

  6. The Multiple Sclerosis Genetics Group. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex. Nature Genet. 13, 469– 471 (1996).

  7. Krogsgaard, M. et al. Visualization of myelin basic protein [MBP] T cell epitopes in MS lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen HLA DR2 MBP 95–99 complex. J. Exp. Med. 191, 1395–412 ( 2000).

    Article  CAS  Google Scholar 

  8. Oksenberg, J.R. et al. Selection for T cell receptor Vb-Db-Jb gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 362, 68– 70 (1993).

    Article  CAS  Google Scholar 

  9. Ota, K. et al. T cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346, 183– 187 (1990).

    Article  CAS  Google Scholar 

  10. Martin, R. et al. A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis . J. Exp. Med. 173, 19– 24 (1991).

    Article  CAS  Google Scholar 

  11. Steinman, L., Waisman, A. & Altmann, A. Major T cell responses in multiple sclerosis. Mol. Med. Today 1, 79–83 (1995).

    Article  CAS  Google Scholar 

  12. Evavold, B.D. et al. Separation of T helper 1 clone cytolysis from proliferation and lymphokine production using analog peptides. J. Immunol. 150, 3131–3140 (1993).

    CAS  PubMed  Google Scholar 

  13. Kuchroo, V. et al. A single TCR antagonist peptide inhibits experimental autoimmune encephalomyelitis mediated by a diverse T cell repertoire. J. Immunol. 153, 3326–3336 ( 1994).

    CAS  Google Scholar 

  14. Hemmer, B., Stefanova, I., Vergelli, M., Germain, R.N. & Martin, R. Relationships among TCR ligand potency, thresholds for effector function elicitation, and the quality of early signaling events in human T cells. J. Immunol. 160, 5807–5814 ( 1998).

    CAS  PubMed  Google Scholar 

  15. Karin, N., Mitchell, D., Ling, N., Brocke, S. & Steinman, L. Reversal of experimental autoimmune encephalomyelitis by a soluble variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of Interferon-γ and TNF-α production. J. Exp. Med. 180, 2227–2237 (1994).

    Article  CAS  Google Scholar 

  16. Gaur, A. et al. Amelioration of relapsing experimental autoimmune encephalomyelitis with altered myelin basic protein peptides involves different cellular mechanisms . J. Neuroimmunol. 74, 149– 158 (1997).

    Article  CAS  Google Scholar 

  17. Stark, S.R. et al. Double-blind randomized placebo control parallel-group evaluation of the safety and effect on immunological parameters of the altered peptide ligand MSP771 in patients with MS. Multiple Sclerosis S, 596 (1999).

    Google Scholar 

  18. Crowe, P.D., Qin, Y., Conlon, P.J. & Antel, J.P. NBI 5788, an altered MBP83–99 peptide, induces a Th2-like immune response in multiple sclerosis patients. Ann. Neuro–. In Press.

  19. Bielekova, B. et al. Preferential expansion of autoreactive T lymphocytes from the memory T- cell pool by IL-7. Brain Pathol. 9, 69–92 (1999).

    Google Scholar 

  20. Goris, A. et al. Analysis of an IFN-gamma gene (IFN-γ) polymorphism in multiple sclerosis in Europe: effect of population structure on association with disease . J. Interferon Cytokine Res. 19(9), 1037 –1046 (1999).

    Article  Google Scholar 

  21. Arnason, B. Immunological therapy of MS. Ann. Rev. Med. 50, 291–302 (1999).

    Article  CAS  Google Scholar 

  22. Steinman, L. Escape from horror autotoxicus: The pathogenesis and treatment of autoimmmunity . Cell 80, 7–10 (1995).

    Article  CAS  Google Scholar 

  23. Steinman, L. & Conlon, P. Viral damage and the breakdown of self-tolerance. Nature Med. 3, 1085–1087 (1997).

    Article  CAS  Google Scholar 

  24. Panitch, H.S. et al. Treatment of MS with gamma interferon: Exacerbations associated with activation of the immune system. Neurology 37, 1097–1103 (1987).

    Article  CAS  Google Scholar 

  25. Hermans, G. et al. Cytokine profile of MBP-reactive T cells in MS and healthy individuals. Ann. Neurol. 42, 18– 27 (1997).

    Article  CAS  Google Scholar 

  26. Navikas, V. et al. Augmented expression of TNFα and lymphotoxin in mononuclear cells in multiple sclerosis and optic neuritis. Brain 119, 213–223 (1996).

    Article  Google Scholar 

  27. Hofman, F.M., Hinton, D.R., Johnson, K. & Merrill, J.E. TNF identified in MS brain. J. Exp. Med. 170, 607–612 (1989).

    Article  CAS  Google Scholar 

  28. Cannella, B. & Raine, C.S. The adhesion molecule and cytokine profile of MS lesions. Ann. Neurol. 37 , 424–435 (1995).

    Article  CAS  Google Scholar 

  29. Traugott, U. & Lebon, P. Multiple sclerosis: Involvement of interferons in lesion pathogenesis. Ann. Neurol. 24, 245–251 (1988).

    Article  Google Scholar 

  30. Luchinetti, C.F., Bruck, W., Rodriguez, M. & Lassmann, H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathology 6, 259– 274 (1996).

    Article  Google Scholar 

  31. Brocke, S. et al. Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature 379, 343–346 (1996).

    Article  CAS  Google Scholar 

  32. Yu, M., Johnson, J.M. & Tuohy, V.K. A predictable sequential determinant-spreading cascade invariably accompanies progression of EAE: A basis for peptide-specific therapy after onset of clinical disease. J. Exp. Med. 183, 1771–1778 (1996).

    Google Scholar 

  33. Windhagen, A. et al. Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand. Immunity 2, 373–380 ( 1995).

    Article  CAS  Google Scholar 

  34. Valli, A. et al. Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J. Clin. Invest. 91, 616–28 (1993).

    Article  CAS  Google Scholar 

  35. Comi, G. & Filippi, M. The effect of Copaxone® on disease activity as measured by cerebral MRI in patients with RRMS: a multi-center, randomized double blind, placebo controlled study extended by open label treatment . Neurology 52, A289 ( 1999).

    Google Scholar 

  36. Aharoni, R., Teitelbaum, D., Arnon, R. & Sela, M. Copolymer 1 acts against the immunodominant epitope 82–100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc. Natl. Acad. Sci. USA 96, 634–9 (1999).

    Article  CAS  Google Scholar 

  37. Duda, P.W., Schmied, M.C., Cook, S.L., Krieger, J.I. & Hafler, D.A. Glatiramer acetate (Copaxone®) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J. Clin. Invest. 105, 967–976 (2000).

    Article  CAS  Google Scholar 

  38. Vandenbark, A.A. et al. Treatment of multiple sclerosis with T-cell receptor peptides: Results of a double-blind pilot trial. Nature Med. 10, 1109–1115 (1996).

    Article  Google Scholar 

  39. Kotzin, B. et al. Preferential TCR beta chain variable gene use in MBP reactive T cell clones from patients with MS. Proc. Natl. Acad. Sci. USA 88, 9161–9165 ( 1991).

    Article  CAS  Google Scholar 

  40. Collins, D.L., Neelin, P., Peters, T.M. & Evans, A.C. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Computer Assisted Tomography 18(2) , 192–205 (1994).

    Article  Google Scholar 

  41. Zijdenbos, A., Forghani, R. & Evans, A. in Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 439–448 (Springer. Verlag, Berlin, 1998).

    Google Scholar 

Download references

Acknowledgements

The support of many investigators with Novartis Pharma is acknowledged, including R. Jackson, D. Murphy, G. Karlsson, H. Faleck, L. Kramer and T. Staehlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Steinman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappos, L., Comi, G., Panitch, H. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nat Med 6, 1176–1182 (2000). https://doi.org/10.1038/80525

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing