Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes

Abstract

The choice of which population to study in the mapping of common disease genes may be critical1,2. Isolated founder populations, such as that found in Finland, have already proved extremely useful for mapping the genes for specific rare monogenic disorders3,4 and are being used in attempts to map the genes underlying common, complex diseases5,6,7,8. But simulation results suggest that, under the common disease-common variant hypothesis9,10,11,12,13, most isolated populations will prove no more useful for linkage disequilibrium (LD) mapping of common disease genes than large outbred populations12. There is very little empirical data to either support or refute this conclusion at present14,15,16. Therefore, we evaluated LD between 21 common microsatellite polymorphisms on chromosome 18q21 in 2 genetic isolates (Finland and Sardinia) and compared the results with those observed in two mixed populations (United Kingdom and United States of America). Mean levels of LD were similar across all four populations. Our results provide empirical support for the expectation that genetic isolates like Finland and Sardinia will not prove significantly more valuable than general populations for LD mapping of common variants underlying complex disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between mean level of LD and marker separation for the four populations studied.
Figure 2: Relationship between mean level of LD and marker separation after classifying alleles into two groups.
Figure 3: Distribution of d2 values for marker separations of ≤1 cM.

Similar content being viewed by others

References

  1. Terwilliger, J.D. & Weiss, K.M. Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr. Opin. Biotechnol. 9, 578–594 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  2. Wright, A.F., Carothers, A.D. & Pirastu, M. Population choice in mapping genes for complex diseases . Nature Genet. 23, 397– 404 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. de la Chapelle, A. & Wright, F.A. Linkage disequilibrium mapping in isolated populations: the example of Finland revisited. Proc. Natl Acad. Sci. USA 95, 12416– 12423 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peltonen, L., Jalanko, A. & Varilo, T. Molecular genetics of the Finnish disease heritage. Hum. Mol. Genet. 8, 1913–1923 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Kuokkanen, S. et al. Genomewide scan of multiple sclerosis in Finnish multiplex families. Am. J. Hum. Genet. 61, 1379– 1387 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Escamilla, M.A. et al. Assessing the feasibility of linkage disequilibrium methods for mapping complex traits: an initial screen for bipolar disorder loci on chromosome 18. Am. J. Hum. Genet. 64, 1670 –1678 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghosh, S. et al. Type 2 diabetes: evidence for linkage on chromosome 20 in 716 Finnish affected sib pairs. Proc. Natl Acad. Sci. USA 96, 2198–2203 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pajukanta, P. et al. Genomewide scan for familial combined hyperlipidemia genes in Finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels. Am. J. Hum. Genet. 64, 1453–1463 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lander, E.S. The new genomics: global views of biology. Science 274, 536–539 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Collins, F.S., Guyer, M.S. & Charkravarti, A. Variations on a theme: cataloging human DNA sequence variation. Science 278, 1580– 1581 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139– 144 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Todd, J.A. Multifactorial diseases: ancient gene polymorphism at quantitative trait loci and a legacy of survival during our evolution. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C.R. et al.) (McGraw-Hill, New York-London, in press).

  14. Laan, M. & Paabo, S. Demographic history and linkage disequilibrium in human populations. Nature Genet. 17, 435–438 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Lonjou, C., Collins, A. & Morton, N.E. Allelic association between marker loci. Proc. Natl Acad. Sci. USA 96, 1621– 1626 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jorde, L.B., Watkins, W.S., Kere, J., Nyman, D. & Eriksson, A.W. Gene mapping in isolated populations: new roles for old friends? Hum. Hered. 50, 57– 65 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Merriman, T. et al. Evidence by allelic-association dependent methods for a type 1 diabetes polygene (IDDM6) on chromosome 18q21. Hum. Mol. Genet. 6, 1003–1010 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  18. Merriman, T.R. et al. Transmission of haplotypes of microsatellite markers rather than single marker alleles in the mapping of a putative type 1 diabetes susceptibility gene (IDDM6). Hum. Mol. Genet. 7, 517– 524 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Thomson, G. Mapping disease genes: family-based association studies. Am. J. Hum. Genet. 57, 487–498 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lewontin, R.C. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49, 49– 67 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Collins, A., Lonjou, C. & Morton, N.E. Genetic epidemiology of single-nucleotide polymorphisms . Proc. Natl Acad. Sci. USA 96, 15173– 15177 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huttley, G.A., Smith, M.W., Carrington, M. & O'Brien, S.J. A scan for linkage disequilibrium across the human genome. Genetics 152, 1711–1722 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Reed, P.W. et al. Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nature Genet. 7, 390–395 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Weir, B.S. Genetic Data Analysis (Sinauer Associates, Sunderland, Massachusetts, 1996).

  25. Hedrick, P.W. Gametic disequilibrium measures: proceed with caution. Genetics 117, 331–341 ( 1987).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Wellcome Trust, British Diabetic Association (BDA), UK Medical Research Council and the Juvenile Diabetes Foundation International. We are grateful for the assistance of the ‘Childhood Diabetes in Finland (DiMe) Study Group’ in the collection of the Finnish family material. The Finnish family collaboration was partially funded by grants from NIH (DK 73957) and the Novo Nordisk Foundation. The BDA and the Human Biological Data Interchange are thanked for the collection of families. F.C. was supported in part by a grant from Assessorato Igiene e Sanità, Regione Sardegna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Todd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaves, I., Merriman, T., Barber, R. et al. The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nat Genet 25, 320–323 (2000). https://doi.org/10.1038/77091

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77091

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing